ABSTRACT

This paper proposes a generative ScatterNet hybrid deep learning (G-SHDL) network for semantic image segmentation. The proposed generative architecture is able to train rapidly from relatively small labeled datasets using the introduced structural priors. In addition, the number of filters in each layer of the architecture is optimized resulting in a computationally efficient architecture. The G-SHDL network produces state-of-the-art classification performance against unsupervised and semi-supervised learning on two image datasets. Advantages of the G-SHDL network over supervised methods are demonstrated with experiments performed on training datasets of reduced size.

Index Terms—SHDL, DTCWT, Semantic Image Segmentation, Convolutional neural network.

1. INTRODUCTION

Semantic image segmentation is the task of partitioning and labeling the image into pixel groups which belong to the same object class. It has been widely used for numerous applications such as robotics [1], medical applications [2], augmented reality [3], and automated driving [4].

In the recent years, three types of learning architectures have been designed to learn the necessary representations required to solve the semantic image segmentation task. These methods include architectures that: (i) encode hand-crafted features extracted from the input images into rich non-hierarchical representations; (ii) learn multiple levels of feature hierarchies from the input data; (iii) make use of the ideas from both categories to extract feature hierarchies from hand-crafted features.

He et al [5] is an example of the first class of architectures which utilize handcrafted region and global label features in multiscale conditional random fields to get the desired semantic segmentation. The second class of architectures includes Convolutional Neural Networks [6] and Deep Belief Networks [7] that learn multiple layers of features directly from the input images. These methods have been shown to achieve state-of-the-art segmentation performance on various datasets [8]. Despite their success, their design and optimal configuration is not well understood which makes it difficult to develop them. In addition, the vast arrays of network parameters can only be learned with the help of powerful computational resources and large training datasets. These may not be available for many applications such as stock market prediction [9], medical imaging [2] etc. The third class of models combine the concepts from both of the above-mentioned models to learn shallow or deep feature hierarchies from low-level hand-crafted descriptors. Yu [10] learned multiple layers of hierarchical features from patch descriptors using stacked denoising autoencoders. This class of models has produced promising performance on various datasets [10].

This paper proposes the Generative ScatterNet Hybrid Deep Learning (G-SHDL) network with structural priors for semantic image segmentation. The G-SHDL network is inspired by the ScatterNet Hybrid Deep Learning (SHDL) [12] network. The SHDL network extracts handcrafted features from the input image using the ScatterNet front-end which are then used by the unsupervised learning based Stacked PCA mid-section layers to learn hierarchical features. These hierarchical features are finally used by the supervised back-end module to solve the object classification task. The approximate minimization of the reconstruction loss function for the PCA layers is obtained simply from the Eigen decomposition of the image patches [13]. This results in rapid learning of the hierarchical features. However we found that, despite the favorable increase in the rate of learning, the approximate solution of PCA loss function produces undesired checkerboard filters which limit the performance of these models.

The proposed G-SHDL network is an improved version of the SHDL network that uses ScatterNet as the front-end, similar to the SHDL network, to extract hand-crafted features from the input images. However, instead of PCA layers in the middle section, the G-SHDL uses four stacked layers of convolutional Restricted Boltzmann Machine (RBM) with structural priors to learn an invariant hierarchy of features. These hierarchy features are finally used by a supervised conditional random field (CRF) to solve the more complicated task of semantic segmentation as opposed to object recognition.

The main contributions of the paper are stated below:

- Rapid Structural Prior based Learning of RBM: Training of convolutional RBMs is slow as the partition function is approximated by sampling using MCMC (Section 2.2). In order to accelerate the training, the filters
Fig. 1. The proposed G-SHDL network uses the ScatterNet front-end to extract hand-crafted scatternet features from the input image at L0, L1 and L2 using DTCWT filters at 2 scales and 6 fixed orientations (filters shown). The handcrafted features extracted at the three layers are concatenated and given as input to the 4 stacked convolutional RBM layers (L3, L4, L5, L6) with 200, 150, 100 and 50 filters to learn a hierarchy of features. Each RBM layer is initialized with PCA based structural priors with same number of filters which improves their training as shown by L3 to L6 convergence graphs. The RBM layers are trained in a layer by layer greedy type fashion. Once a RBM layer is trained the optimal number of filters are selected using 5 fold cross validation that results in a computationally efficient architecture (Table. 1) as the later layers can feature from a smaller feature space. The features learned by the last RBM layer (L6) are used by the CRF for semantic image segmentation. PCA layers can learn the undesired checkerboard filters (shown in red) which are avoided and not used as the prior for the RBMs. In order to detect and remove the checkerboard filters from the learned filter set, we used the method defined in [11].

- **Computationally Efficient:** The number of filters in a particular RBM layer are optimized using crossvalidation that results in a computationally efficient architecture as the filters in the subsequent layer are now learned from a smaller feature space.
- **Advantages over supervised learning:** With G-SHDL only a fraction of the training samples need to be labelled, whereas supervised networks require large labelled training datasets for effective training, which may not be available [9, 10]). The requirement for relatively small labeled datasets can be especially advantageous for semantic segmentation tasks as it can be expensive and time consuming to generate pixel-wise annotations.

G-SHDL network is used to perform semantic segmentation on MSRC [14] and Stanford background (SB) [15] datasets. The average segmentation accuracy for each class for both datasets is presented. In addition, an extensive comparison of the proposed pipeline with other deep supervised segmentation methods is demonstrated.

The paper is divided as follows: section 2 briefly presents the proposed G-SHDL network, section 3 presents the experimental results while section 4 draws conclusions.

2. PROPOSED G-SHDL NETWORK

The Generative ScatterNet Hybrid Deep Learning Network (G-SHDL) is detailed below. The first subsection explains the mathematical formulation of the ScatterNet while the second subsection presents the stacked RBM mid-section layers with PCA structural priors that learn hierarchical features. The final sub-section explains the CRF supervised back-end that uses the hierarchical features to produce the desired segmentation. The G-SHDL network is presented in Fig. 1.

2.1. DTCWT ScatterNet

The parametric log based DTCWT ScatterNet [16] is used to extract the relatively symmetric translation invariant hand-
crafted features from the RBG input image.

Invariant features are obtained by filtering the input signal \(x \) at the first layer (L1) with dual-tree complex wavelets \([17, 28]\) \(\lambda_1 = (j, r) \) at different scales \(j \) and six pre-defined orientations \(r \) fixed to \(15^\circ, 45^\circ, 75^\circ, 105^\circ, 135^\circ \) and \(165^\circ \). To build a more translation invariant representation, a point-wise L2 non-linearity (complex modulus) is applied to the real and imaginary \((a \) and \(b \)) of the filtered signal. The parametric log transformation layer is then applied to all the oriented representations extracted at the first scale \(j = 1 \) with a parameter \(k_{j=1} \), to reduce the effect of outliers by introducing relative symmetry to the pdf \([16]\), as shown below

\[
U_1[j] = \log(U[j]+k_j), \quad U[j] = \sqrt{|x \ast \psi_\lambda^a|^2 + |x \ast \psi_\lambda^b|^2},
\]

Next, a local average is computed on the envelope \(|U_1|_{\lambda_1=1} \) that aggregates the coefficients to build the desired translation-invariant representation:

\[
S[\lambda_1=1] = |U_1|_{\lambda_1=1} \ast \phi_{2^j}
\]

The high frequency components lost due to smoothing are retrieved by cascaded wavelet filtering performed at the second layer \((L2) \). The retrieved components are again not translation invariant so invariance is achieved by first applying the L2 non-linearity to obtain the regular envelope followed by a local-smoothing operator applied to the regular envelope \(U_2[\lambda_{m=1}, \lambda_{m=2}] \) to obtain the desired second layer \((L2) \) coefficients with improved invariance:

\[
S[\lambda_{m=1}, \lambda_{m=2}] = |U_1|_{\lambda_1=1} \ast \psi_{\lambda_2} \ast \phi_{2^j}
\]

The scattering coefficients obtained at each layer are:

\[
S = \begin{pmatrix}
x \ast \phi_{2^j}(L0) \\
U_1|_{\lambda_1=1} \ast \phi_{2^j}(L1) \\
|U_1|_{\lambda_1=1} \ast \psi_{\lambda_2} \ast \phi_{2^j}(L2)
\end{pmatrix}_{j=(2,3,4,5,...)}
\]

ScatterNet features have been found to improve learning and generalization in deep supervised networks \([29]\).
Table 1. 5 fold cross validation performed on the training dataset of Stanford background (SB) dataset to select optimal filters for L3 to L6 RBM layers. L(size) = No. of filters (a, a is equivalent to a x a)

<table>
<thead>
<tr>
<th>Filters</th>
<th>L3 (size)</th>
<th>43 (size)</th>
<th>L5 (size)</th>
<th>L6 (size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>200 (3,3)</td>
<td>150 (5,5)</td>
<td>100 (7,7)</td>
<td>50 (9,9)</td>
</tr>
<tr>
<td>RBM</td>
<td>200 (3,3)</td>
<td>150 (5,5)</td>
<td>100 (7,7)</td>
<td>50 (9,9)</td>
</tr>
<tr>
<td>Selected</td>
<td>139</td>
<td>110</td>
<td>83</td>
<td>47</td>
</tr>
</tbody>
</table>

3. OVERVIEW OF RESULTS

G-SHDL was evaluated and compared with other segmentation frameworks on both MSRC [14] and Stanford Background (SB) [15] datasets. The MSRC dataset contains 591 images with 21 classes while the SB dataset is formed of 715 images with 8 classes, where each image in both datasets has a resolution of 320 x 240. The quantitative results are presented with the class pixel accuracy which represents the ratio of correct pixels computed in a per-class (PA) [8] basis and then averaged over the total number of classes. The results are presented for 5-fold cross-validation for both datasets randomly split into 45% training, 15% validation and 40% test images for each fold. We provide a quantitative comparison against the state-of-the-art to evaluate the performance of G-SHDL.

3.1. Handcrafted Front-end: ScatterNet

ScatterNet features are extracted from the input RGB image using DTCWT filters at 2 scales and 6 fixed orientations. Next, log transformation with parameter $k_0=1.1$ is applied to the representations obtained at the finer scale to introduce relative symmetry. (Section. 2.1).

3.2. Unsupervised Mid-section: RBM with PCA priors

The four stacked convolutional RBM layers learn 200, 150, 100 and 50 filters respectively with PCA structural priors (obtained by training on the handcrafted features) in a greedy layer-wise fashion (Section 2.2). Once, each RBM layer is trained, five-fold cross-validation (5-CV) is computed with filters randomly selected from the trained filter set to evaluate the segmentation accuracies using CRF. We are able to achieve similar PA accuracy on the 5-CV with the fewer number of filters than the complete learned filter set. This suggests that some of the filters learn redundant information which can be removed. This results in efficient learning of subsequent layers as the filters are learned from a smaller feature space. The numbers of selected filters are shown in Table. 1.

3.3. Classification performance and comparison

This section presents the classification performance of each module of the G-SHDL network. The accuracy of the hand-crafted module (HC) is computed on the concatenated relatively symmetric features extracted at L0, L1, L2, for both resolutions (R1, R2) using CRF for segmentation on MSRC dataset. The hand-crafted module produced a classification accuracy of 68.4% (HC) as shown in Table. 2. An increase of approximate 4%, 2%, 2% and 2% is observed when the mid-level features, learned at L3, L4, L5 and L6 are used by the CRF. This suggests that the RBM layers learn useful image representations as they improve the segmentation performance finally producing an accuracy of 78.21%.

Table 2. PA (%) on SB dataset for each module computed with CRF. The increase in accuracy with the addition of each layer is also shown. HC: Hand-crafted. RBM Layers: L3, L4, L5 and L6.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>HC</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>68.4</td>
<td>72.3</td>
<td>74.8</td>
<td>76.7</td>
<td>78.21</td>
</tr>
</tbody>
</table>

Next, the performance of the SHDL network is evaluated on the MSRC dataset. The network results in a segmentation accuracy of 83.90%, as shown in Table. 3. The G-SHDL outperformed the semi-supervised and unsupervised learning methods on both datasets; however the network underperformed against supervised deep learning models [21, 22], as shown in Table 3. The segmentation results for two images from the MSRC dataset are shown in Fig. 3.

Table 3. PA (%) and comparison on both datasets. Unsup: Unsupervised, Semi: Semi-supervised and Sup: Supervised.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>G-SHDL</th>
<th>Semi</th>
<th>Unsup</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB [14]</td>
<td>78.21</td>
<td>77.76</td>
<td>68.1</td>
<td>80.2</td>
</tr>
<tr>
<td>MSRC [15]</td>
<td>83.90</td>
<td>83.6</td>
<td>74.7</td>
<td>89.0</td>
</tr>
</tbody>
</table>

3.4. Advantage over Deep Supervised Networks

Deep Supervised models need large labeled datasets for training which may not exist for most application. Table 4 shows that our G-SHDL network outperformed the recurrent CNN of [25] on the SB dataset with less than 300 images due to poor ability of rCNNs to train on small training datasets. The experiments were performed by dividing the training dataset into 8 datasets of different sizes. It is made sure that an equal number of images per object class were sampled from the training dataset. The full test set was used for all experiment.

Table 4. Comparison of G-SHDL on PA (%) with Recurrent CNN (rCNN) [25] against different training dataset sizes on SB dataset.

<table>
<thead>
<tr>
<th>Arch.</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>572</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-SHDL</td>
<td>40.3</td>
<td>59.9</td>
<td>66.4</td>
<td>72.6</td>
<td>75.7</td>
<td>78.20</td>
<td>78.21</td>
</tr>
<tr>
<td>rCNN</td>
<td>15.6</td>
<td>34.5</td>
<td>41.1</td>
<td>66.9</td>
<td>76.2</td>
<td>79.87</td>
<td>80.2</td>
</tr>
</tbody>
</table>

4. CONCLUSION

The paper proposes a generative G-SHDL network for semantic image segmentation that is faster to train and computationally efficient. The network uses PCA based structural priors that accelerate the training of (otherwise slow) RBMs. The network has been shown to outperform unsupervised and semi-supervised learning methods while evidence of the advantage of G-SHDL network over supervised learning (rCNN) methods is presented for small training datasets.
5. REFERENCES

