OPTIMAL DECISION THRESHOLD FOR EIGENVALUE-BASED SPECTRUM SENSING TECHNIQUES

Yibo He†, Tharmalingam Ratnarajah†, Jiang Xue†, Ebtihal H. G. Yousif† and Mathini Sellathurai§

† IDCOM, The University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JL, UK
§ School of Engineering & Physical Sciences, Heriot-Watt University, U.K

ABSTRACT

This paper investigates optimization of the sensing threshold that minimizes the total error rate (i.e., the sum of the probabilities of false alarm and missed detection) of eigenvalue-based spectrum sensing techniques under low and moderate SNR conditions. Four techniques are investigated, which are maximum eigenvalue detection (MED), maximum minimum eigenvalue (MME) detection, energy with minimum eigenvalue (EME) detection, and the generalized likelihood ratio test (GLRT) detection. The contribution of this work is of four parts. Firstly, we present the derivative of the matrix-variate confluent hypergeometric function, which is required for the MED case. Secondly, we derive the probabilities of false alarm for both cases MME and EME detection. Thirdly, we derive the exact expressions required to obtain the optimal sensing thresholds for all cases. The simulation results reveal that for all the investigated cases the chosen optimal sensing thresholds achieve the minimum total error rate.

Index Terms— Cognitive radio, eigenvalue-based spectrum sensing, optimal decision threshold, matrix-variate confluent hypergeometric function

1. INTRODUCTION

The problem of efficient utilization of the frequency spectrum has become a major issue within the research community. This is due to the well-known fact that the available spectrum is an overcrowded natural shared resource, and the fact that there is an overgrowing demand for communication services. However, under the current spectrum management schemes, unlicensed (secondary) users (SUs) are prohibited to access the frequency bands which are allocated exclusively to licensed (primary) users [1]. An efficient solution to spectrum scarcity is cognitive radio which allows secondary (or cognitive) users (SUs) to detect and exploit spectrum holes whenever the primary users (PUs) are absent. However, during exploitation of such spectrum opportunities, SUs should not cause harmful interference to PUs. Therefore, spectrum sensing is an essential and crucial part for the implementation of the cognitive radio technology. An efficient spectrum sensing scheme should allow detection of PUs even under very low SNR conditions. For instance, the IEEE 802.22 standard for Wireless Regional Area Networks (WRANs) requires detection of Digital Television (DTV) signals using minimum probabilities of false alarm \(P_f\) and missed detection \(P_m\) of 0.1.

Among many spectrum sensing techniques, eigenvalue-based detection is highly accurate and can provide minimal probability of error without much prior knowledge of the PU signals [2].

Four methods exist for eigenvalue-based detection which include MED [3], MME detector [4], EME detector [2] and GLRT detector [5]. The major objective of spectrum sensing is finding an optimal threshold that minimizes sensing errors.

Maintaining a minimal probability of missed detection serves the interests of PUs, as it protects them from secondary interference. On the other hand, maintaining a minimal probability of false alarm creates more chances for the SUs to access more channels. Since studying \(P_f\) is more difficult and complicated, the previous work [2–6] on eigenvalue-based detection have mainly focused on minimizing \(P_m\) to benefit secondary users only. The optimization of energy detector (ED) was studied in [7], but the ED was sensitive to noise uncertainty which had no influences on eigenvalue-based detectors. Therefore, in this paper we focus on \(P_m\) and the total error rate \(P_e\) of eigenvalue-based detection to benefit both PUs and SUs simultaneously. This enables protection of PUs from secondary interference, while SUs can have higher probability of accessing the available frequency bands. Therefore, in this study we investigate the optimization of eigenvalue-based detection by finding the optimal decision threshold that minimizes \(P_e\). Specifically, we derive the exact expressions of \(P_e\) for MED with arbitrary number of receive antennas and MME, EME and GLRT detectors with 2 receive antennas and find the optimal decision thresholds to minimize the \(P_e\).

The remainder of this paper is organized as follows. Section II describes the system model, section III investigates optimization of the sensing threshold for the four methods, Section IV presents the simulation results, and finally Section V concludes the paper.

2. MULTIPLE-ANTENNA SPECTRUM SENSING MODEL

Let us consider a generic spectrum sensing scenario within a MIMO system that consists of \(p\) transmit antennas and \(m\) receive antennas. The transmitted signals are assumed to have a length of \(n\) samples, where \(n > m\). Let \(\mathcal{H}_0\) (PU is absent) and \(\mathcal{H}_1\) (PU is present) denote the null and the alternate hypotheses respectively. During the sensing period, the received signal \(Y\) is given by

\[\mathcal{H}_0: Y = V, \]
\[\mathcal{H}_1: Y = H X + V, \]

(1)

where \(Y \in \mathbb{C}^{m \times n}\) is the matrix of the received signal samples at the secondary receivers, \(H \in \mathbb{C}^{m \times p}\) is a complex Gaussian channel matrix. The matrix \(V \in \mathbb{C}^{m \times n}\) represents an additive Gaussian white noise, which is independent of the channel, and the circularly symmetric complex Gaussian matrix of the transmitted signals \(X \in \mathbb{C}^{n \times m}\). Specificially, \(V \sim \mathcal{CN}(0, \sigma^2 I_m)\) and \(X \sim \mathcal{CN}(0, \Sigma)\). Therefore, the received signals by the cognitive antennas should be an \(m \times n\) complex Gaussian matrix. Henceforth, the matrix \(W = Y \times Y'\) is a complex central Wishart matrix, i.e.,
\[W \sim CW_m(n, \Sigma_m), \]
where the covariance matrix \(\Sigma_m \) is given by
\[
\Sigma_m = \begin{cases}
\delta_n I_m, & H_0, \\
H \Sigma H^H + \delta_n^2 I_m, & H_1.
\end{cases}
\]
Let \(T \) denotes the test statistic used for eigenvalue-based spectrum sensing. The formulation of \(T \) can vary depending on the different types of eigenvalue-based detectors. Let \(\lambda_{\text{max}} = \lambda_1 > \cdots > \lambda_n = \lambda_{\text{min}} \) denote the eigenvalues of the matrix \(W \). Hence, the test statistics for MED, MME detection and GLRT detection are given by: \(T_{\text{MED}} = \lambda_{\text{max}}, T_{\text{MME}} = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}, \) and \(T_{\text{GLRT}} = \frac{\lambda_{\text{max}}}{\sum_{i=1}^{n-1} \lambda_i} \) respectively. The focus of this paper is to find an optimal decision threshold \(r_{\text{opt}} \) that minimizes the total error rate \(P_e \) which is determined by
\[
P_e = P_{\text{fa}} + P_{\text{md}} = \int_{-\infty}^{r} f_0(t) \, dt + \int_{r}^{\infty} f_1(t) \, dt,
\]
where \(f_0(t) \) and \(f_1(t) \) denote the probability distribution functions (PDFs) of the test statistic \(T \) under \(H_0 \) and \(H_1 \) respectively and \(r \) stands for the decision threshold.

An appropriate decision threshold \(r \) can achieve the desired value of probability of false alarm \(P_{\text{fa}} \), but the corresponding probability of missed detection \(P_{\text{md}} \) may not meet an acceptable value. Therefore, in practical applications, it is essential to find an optimal decision threshold \(r_{\text{opt}} \) that minimizes the total error rate. This can make both \(P_{\text{fa}} \) and \(P_{\text{md}} \) meet the acceptable values simultaneously.

3. Optimization of the Decision Threshold

In this section, we investigate the optimal sensing thresholds for the cases of MED (with arbitrary number of receive antennas) and MME, EME and GLRT detectors (with 2 receive antennas), and assume the case of one PU with a single antenna, i.e., \(p = 1 \). For each type of the eigenvalue-based detectors, in order to find the optimal decision threshold \(r_{\text{opt}} \), and the total error rate \(P_e \), the exact cumulative distribution function (CDF) (or the PDF) of the corresponding test statistic is required for both cases of \(H_0 \) and \(H_1 \).

3.1. Optimal Threshold for the MED

In this subsection, we derive the exact expression of the total error rate \(P_e \) for MED assuming an arbitrary number of receive antennas. Also, the corresponding optimal decision threshold is analysed by using the derivative of the total error rate. However, in order to get the derivative of \(P_e \), we have to solve the issue of finding the derivative of a confluent hypergeometric function with a matrix argument. This case was not studied in the literature and only the derivative of the confluent hypergeometric function with a scalar argument is studied before.

Firstly, let us start with the case of \(H_0 \), where in this case \(W \sim CW_m(n, \sigma_x^2 I_m) \). Hence, by making use of the CDF of the maximum eigenvalue of an uncorrelated complex central Wishart matrix, the probability of false alarm is given by [8]
\[
P_{\text{fa}}(x) = 1 - \frac{CT_m(m)}{CT_m(n+m)} x^{m-1} F_1(n; n + m; -x \sigma_x^2 I),
\]
where \(F_1(\cdot; \cdot; \cdot) \) is the matrix-variate confluent hypergeometric function and
\[
CT_m(a) = \frac{\Gamma(a + 1)}{\Gamma(a)} \prod_{k=1}^{m} \Gamma(a - k + 1),
\]
where \(\Gamma(\cdot) \) is the gamma function, \(\Gamma(a) > (m - 1) + 1, k = k_1 + k_2 + \cdots + k_m \) and \(k_1 > \cdots > k_m \geq 0 \). On the other hand, considering the hypothesis \(H_1 \), \(W \sim CW_m(n, \Sigma_m) \). Therefore, the probability of missed detection is given by [8]
\[
P_{\text{md}}(x) = \frac{CT_m(m)x^{m-1} F_1(n; n + m; -x \Sigma_m^{-1})}{CT_m(n+m)(\det \Sigma_m)^{n-m}}.
\]
Henceforth, the total error rate \(P_e \) for MED with an arbitrary number of receive antennas can be obtained by using (2). It can be seen that \(P_e(x) \) is a convex function, which indicates it has a global minimum value for \(x \). Also, this implies that there exists one and only one value of \(x \) which minimizes \(P_e(x) \). Therefore, the optimal decision threshold \(r_{\text{opt}} \) is given by
\[
r_{\text{opt}} = \arg \min P_e(x),
\]
which can be achieved when the derivative of the total error rate is \(\frac{dP_e(x)}{dx} = 0 \). The corresponding derivative is obtained as
\[
\frac{dP_e(x)}{dx} = \frac{CT_m(m)}{CT_m(n+m)(\det \Sigma_m)^{n-m}} \left[m x^{m-1} A + x^n \left(\text{tr}(C) - \text{tr}(D) \right) \right] + \frac{CT_m(m)}{CT_m(n+m)} \left[m x^{m-1} B + x^n \left(\text{tr}(A) - \text{tr}(B) \right) \right],
\]
where the matrices \(A, B, C, D \) are given by
\[
A = \left(-x \sigma_x^2 \right)^{k_j + m-j-1} (\sigma_x^2)^{-(k_j - m + j)} (\sigma_x^2)^{k_j + m-j-1},
\]
\[
B = \left(-x \sigma_x^2 \right)^{m-j-1} (\sigma_x^2)^{-(j-m)} (\sigma_x^2)^{m-j-1},
\]
\[
C = (x \beta)^{k_j + m-j-1} (\beta)^{-(k_j - m + j)} (\beta)^{k_j + m-j-1},
\]
\[
D = (x \beta)^{m-j-1} (\beta)^{-(j-m)} (\beta)^{m-j-1},
\]
where \(\beta_1, \ldots, \beta_m \) are the eigenvalues of the matrix \(-\Sigma_m^{-1} \). The solution to \(\frac{dP_e(x)}{dx} = 0 \) can be evaluated numerically and represents the desired optimal decision threshold.

3.2. Optimal Threshold for the MME

In this subsection, we derive the exact expression of the total error rate for the MME detector assuming \(m = 2 \) and show the required steps to obtain the optimal decision threshold. Assuming \(H_0 \), the PDF of the test statistic \(T_{\text{MME}} \) for the case of \(m = 2 \) is given by [4]
\[
f_{\text{MME}}(x) = \frac{\Gamma(2n)}{\Gamma(n)\Gamma(n-1)} \left(1 - \frac{1}{x} \right)^2 \left(\frac{1}{2} \right)^n \left(1 + \frac{1}{x} \right)^{-2n}.
\]
By making use of the previous equation, (9), we derive the probability of false alarm as
\[
P_{\text{fa}}(x) = \frac{\Gamma(2n)}{\Gamma(n)\Gamma(n-1)} \left(2\Delta_1(2n, n-1, x) - 2\Delta_1(2n, n, x) + \Delta_1(2n, n + 1, x) \right),
\]
where \(\Delta_1(\cdot; \cdot; \cdot) \) is the confluent hypergeometric function and
\[
\Delta_1(a, b, c) = \frac{\Gamma(a+b+c)}{\Gamma(a)\Gamma(b)\Gamma(c)} \int_0^1 t^{a-1}(1-t)^{b-1} \, dt.
\]
where \(\Delta_1(a, b, y) = \frac{2a}{\sqrt{\pi}} F_1(a, b + 1, -y^{-1}) \), and \(F_1(\ldots) \) is the Gaussian hypergeometric function. Assuming \(\mathcal{H}_1, W \sim \mathcal{C}\mathcal{W}_2(n, \Sigma_2) \), and making use of the results in [8] yields the PDF of the test statistic \(T_{EME} \) associated with \(W \) as given by (22), where \(\Delta_2(a, b, c, d, y) = -(b-1)! \sum_{k=0}^{b-1} \frac{(a+k)! y^k}{k! (a+y+k+1)} \) and \(\delta_1 > \delta_2 \) are the non-zero ordered eigenvalues of \(\Sigma_2 \). The probability of missed detection of the MME detector can then be obtained by

\[
P_m(x) = \frac{(\delta_1 \delta_2)^{1-n}}{(n-1)! (n-2)! (\delta_2 - \delta_1)} \left(S(x) - S(1) \right),
\]

where \(x > 1 \), and \(S(y) \) is given by (23) and \(\Delta_3 \) is given by

\[
\Delta_3(a, b, c, d, y) = -(b-1)! \times \left(\begin{array}{c} a \end{array} \right)_{n+1} \sum_{k=0}^{b-1} \frac{(a+k)! y^k}{k! (a+y+k+1)}.
\]

Thus, the exact expression of the total error rate \(P_e \) can be directly obtained from summing (10) and (11). In order to obtain the optimal decision threshold \(\alpha_{opt} \), the derivative \(\frac{dP_m(x)}{dx} \) is

\[
\frac{dP_m(x)}{dx} = \frac{d(P_m(x) + P_0(x))}{dx} = f_{EME1}(x) - f_{EME0}(x).
\]

The solution to \(f_{EME1}(x) - f_{EME0}(x) = 0 \) can be evaluated numerically and is the desired optimal decision threshold.

3.3. Optimal Threshold for the EME

In this subsection, the case of the EME detector is considered assuming 2 receive antennas. Since under \(\mathcal{H}_1, W \sim \mathcal{C}\mathcal{W}_2(n, \sigma^2 I_m) \) then the PDF of the test statistic \(T_{EME} \) is given by [9]

\[
f_{EME0}(x) = \frac{\Gamma(2n-2)^{-2}(x-1)^{n-2}(x-2)^2}{\Gamma(n) \Gamma(n-1)} x \geq 2.
\]

Hence, we derive the probability of false alarm \(P_{fa} \) as

\[
P_{fa}(x) = 1 - \frac{\Gamma(2n)}{\Gamma(n) \Gamma(n-1)} \sum_{k=0}^{n-2} \left(\begin{array}{c} n-2 \\ k \\ \end{array} \right) (-1)^{n-2-k} \times \left(\frac{2^{k-2n+3} - 2^{k-2n+3}}{k-2n+3} - 4 \frac{2^{k-2n+2} - 2^{k-2n+2}}{k-2n+2} + 4 \frac{2^{2k-2n+1} - 2^{2k-2n+1}}{k-2n+1} \right).
\]

Assuming \(\mathcal{H}_1 \), and using [10], the PDF of the threshold \(T_{EME} \), that is associated with the dual correlated complex Wishart matrix \(W \sim \mathcal{C}\mathcal{W}_2(n, \Sigma_2) \) is given by

\[
f_{EME1}(x) = \frac{\Gamma(2n-1)(\delta_1 \delta_2)^{1-n}(x-2)}{\Gamma(n) \Gamma(n-1)(\delta_1 - \delta_2)} (x-1)^{n-2} \times \left(\Delta_4(\delta_2, \delta_1, x) - \Delta_4(\delta_2, \delta_1, x) \right),
\]

where \(x \geq 2, \Delta_4(\delta_2, \delta_1, x) = \frac{\delta_2}{\delta_1} + \frac{\delta_1}{\delta_2}, \Delta_4(\delta_2, \delta_1, x) = \frac{\delta_2}{\delta_1} + \frac{\delta_1}{\delta_2} \) and \(\delta_1 \) and \(\delta_2 \) are the non-zero ordered eigenvalues of \(\Sigma_2 \). Hence, we have \(W \sim \mathcal{C}\mathcal{W}_2(n, \Sigma_2) \), and therefore the PDF of the threshold \(T_{GLRT} \) is given by [5]

\[
f_{GLRT}(x) = \frac{(x+1)(x+2)^2}{\Gamma(n) \Gamma(n-1)(x+1)} x \geq 2, \frac{1}{2} \leq x \leq 1,
\]

(21)
The calculation of matrix-variate confluent complex hypergeometric function utilizes the MATLAB codes provided by [11]. Starting with the case of MED, Figure (a) of Fig. 1 depicts the total error rate versus the decision threshold. The results are plotted for different cases of number of transmitted signal samples, \(n = \{20, 30, 40\} \), and an SNR of 0dB using \(\mathbf{\Sigma}_m = \left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right) \). The results show the corresponding optimal decision threshold is \(r_{\text{opt}} = 1.6 \). Here we can indicate the optimal decision threshold is \(r_{\text{opt}} = 1.6 \). We can derive that the optimal decision threshold minimizing the total error rate is \(r_{\text{opt}} = \left\{0.19, 0.16, 0.15\right\} \). Figure (c) of Fig. 2 illustrates the total error rate of EME detection versus the threshold using \(n = \{15, 20, 25\} \) when \(\text{SNR} = 0\text{dB} \) and \(\mathbf{\Sigma}_m = \left(\begin{array}{cc} -0.3 & -0.4 \\ -0.4 & 1.6 \end{array} \right) \). Here we can find the optimal decision threshold is \(r_{\text{opt}} = 3.75 \) for \(n = 15 \) and \(r_{\text{opt}} = 3.5 \) for \(n = \{20, 25\} \). The corresponding total error rates are \(P_{e} = \{0.17, 0.09, 0.06\} \). Finally, Figure (d) of Fig. 2 shows the total error rate of the GLRT detector versus the threshold, assuming \(n = \{8, 9, 10\} \) when \(\text{SNR} = 0\text{dB} \) and \(\mathbf{\Sigma}_m = \left(\begin{array}{cc} 0.55 & -2.11 \\ -2.11 & 6.2 \end{array} \right) \). Here it is found that the optimal decision threshold is \(r_{\text{opt}} = 0.82 \) for \(n = 8 \) and \(r_{\text{opt}} = 0.80 \) for \(n = \{9, 10\} \), where the corresponding total error rates are \(P_{e} = \{0.17, 0.13, 0.10\} \). For all cases, it is clear that the proposed optimal decision thresholds minimize the total error rate which enables both \(P_{e} \) and \(P_m \) achieving acceptable values simultaneously.

4. SIMULATION RESULTS

In this section, some simulation results are presented and discussed. For simplicity but without loss of generality, we assume a spectrum sensing scenario with 2 receive antennas and one transmit antenna. The calculation of matrix-variate confluent complex hypergeometric function utilizes the MATLAB codes provided by [11]. Starting with the case of MED, Figure (a) of Fig. 1 depicts the total error rate versus the decision threshold. The results are plotted for different cases of number of transmitted signal samples, \(n = \{20, 30, 40\} \), and an SNR of 0dB using \(\mathbf{\Sigma}_m = \left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right) \). The results show the corresponding optimal decision threshold is \(r_{\text{opt}} = 1.6 \). Here we can indicate the optimal decision threshold is \(r_{\text{opt}} = 1.6 \). We can derive that the optimal decision threshold minimizing the total error rate is \(r_{\text{opt}} = \left\{0.19, 0.16, 0.15\right\} \). Figure (c) of Fig. 2 illustrates the total error rate of EME detection versus the threshold using \(n = \{15, 20, 25\} \) when \(\text{SNR} = 0\text{dB} \) and \(\mathbf{\Sigma}_m = \left(\begin{array}{cc} -0.3 & -0.4 \\ -0.4 & 1.6 \end{array} \right) \). Here we can find the optimal decision threshold is \(r_{\text{opt}} = 3.75 \) for \(n = 15 \) and \(r_{\text{opt}} = 3.5 \) for \(n = \{20, 25\} \). The corresponding total error rates are \(P_{e} = \{0.17, 0.09, 0.06\} \). Finally, Figure (d) of Fig. 2 shows the total error rate of the GLRT detector versus the threshold, assuming \(n = \{8, 9, 10\} \) when \(\text{SNR} = 0\text{dB} \) and \(\mathbf{\Sigma}_m = \left(\begin{array}{cc} 0.55 & -2.11 \\ -2.11 & 6.2 \end{array} \right) \). Here it is found that the optimal decision threshold is \(r_{\text{opt}} = 0.82 \) for \(n = 8 \) and \(r_{\text{opt}} = 0.80 \) for \(n = \{9, 10\} \), where the corresponding total error rates are \(P_{e} = \{0.17, 0.13, 0.10\} \). For all cases, it is clear that the proposed optimal decision thresholds minimize the total error rate which enables both \(P_{e} \) and \(P_m \) achieving acceptable values simultaneously.

5. CONCLUSION

In this paper, the problem of finding the optimal decision threshold was considered for eigenvalue-based spectrum sensing. Specifically, we focused on the MED with arbitrary number of receive antennas, as well as the EME, EME and GLRT detectors with 2 receive antennas. The case of MED required finding the derivative of the matrix-variate confluent hypergeometric function. Also, for the cases of both the MME and EME detectors we presented accurate expressions for the probability of false alarm. Furthermore, for the case of the GLRT detector we derived an accurate expression for the probability of missed detection. For all cases, the exact total error rate was formulated and we presented the equations to numerically obtain the optimal decision thresholds which could minimize the total error rate.
6. REFERENCES

