PERFORMANCE–ENERGY TRADEOFFS IN CUTSET WIRELESS SENSOR NETWORKS

Matthew A. Prelee and David L. Neuhoff

EECS Department, University of Michigan, Ann Arbor, MI 48109

ABSTRACT

This work explores performance vs. communication energy tradeoffs in wireless sensor networks that use the recently proposed cutset deployment strategy in which sensors are placed densely along a grid of intersecting lines. For a given number of sensors, intersensor spacing is less for a cutset network than for a conventional lattice deployment, so that cutset networks require less communication energy, albeit with some potential loss in network performance. Previous work analyzed the energy-performance tradeoffs for square-grid cutset networks in the context of specific decentralized algorithms for source localization based on received signal strength (RSS). The current work also considers the RSS based source localization problem. However, it takes a more fundamental approach to analyzing the tradeoff by considering a centralized task, minimum energy communication paths, Maximum Likelihood estimation algorithms and Cramér-Rao bounds. Moreover, it analyzes triangular and honeycomb cutset deployments, in addition to square-grid ones. The results indicate that cutset networks offer sizable decreases in energy with only modest losses of performance.

Index Terms— Wireless sensor networks, source localization.

1. INTRODUCTION

A common topic of research in the area of wireless sensor networks is that of finding ways to reduce energy consumption of battery-powered sensors, thereby increasing the overall lifetime of the network. For fixed hardware constraints, network energy consumption can be reduced by using efficient communication protocols [1–3], distributed algorithms [4, 5], and sensor-placement strategies [6, 7]. Recently, variants on all three of the above strategies were proposed to reduce the energy required in solving a single source, received-power sensors, thereby increasing the overall lifetime of the network. We begin by analyzing communication energy advantages of cutset networks in Section 2 for a many-to-one communication task. In Section 3, we use the RSS-based source-localization problem to demonstrate tradeoffs between estimation error and energy for various network topologies under two different noise models. Average Cramér Rao bounds and results of an approximate ML algorithm are used to measure error performance; these experimental results are shown in Section 4. We conclude our findings in Section 5.

2. CUTSET NETWORKS

When analyzing sensor networks, it is common to assume that sensors are randomly distributed, as in Fig. 1(a). However, in some applications, the network designers are free to choose where sensors are placed, perhaps using one of the lattice layouts in Fig. 1(b,c,d). We show that these are not as efficient at transmitting data as the cutset networks shown in Figure 1(e,f,g), which are formed by first placing sensors at the vertices of square, triangular, and hexagonal tessellations, respectively, and then evenly placing $k-1$ sensors between each vertex. Figures 1(e,f,g) show cutset networks for $k = 5$.

We wish to compare networks with a common sensor density ρ. For fixed ρ, a cutset network of parameter k will have intersensor spacing λ given by Table 1, and the tessellating polygon will have side length $k \lambda$. Thus, for fixed ρ, as k increases, intersensor spacing λ decreases as $O(k^{-1/2})$, but the tessellating cell area increases as $O(k)$. When these cell areas are large, their center points become increasingly distant from the closest sensor, which can lead to decreasing performance in a typical signal processing task.

For tractability, we restrict networks to a circular region $B_R = \{t : ||t|| \leq R\}$ of radius R. To generate a network with approximately 250 sensors, we set the target density to be $\rho = 250/\pi R^2$, place a first sensor at the origin, generate an infinite network with the desired geometry using the intersensor spacing λ in Table 1, and finally, truncate the network to B_R. As a result, the final number of sensors n may differ slightly from 250. Let $X = \{x_i \in B_R, i = 0, \cdots, n - 1\}$ denote the set of sensor locations, with x_0 denoting the sensor at the origin. For random deployments, we merely place 250 sensors randomly within B_R.

Our analysis assumes the following far-field communication model: Let α be some communication path-loss exponent between 2 and 4. If two sensors are separated by distance d communicate at received power P_0, we model the required transmission energy as $w(d) = P_0 d^\alpha$.

Now suppose all sensors wish to transmit one packet of data to the sensor at x_0 in order to run a centralized algorithm or make a centralized decision. Each sensor $x \in X$ chooses a path, i.e., a sequence...
of sensor locations \(x_0 = x, x_1, x_2, \ldots, x_{n_{im}} \) in \(\mathcal{X} \), to relay its data to \(x_0\), engendering a path cost equal to \(P_0 \sum_{j=1}^{n_{im}} \|x_j - x_{j-1}\|^2\), and a total energy that is the sum of such over all \(x \in \mathcal{X} \). It is possible to compute the minimum possible total communication energy consumed by the network. First, form the complete weighted graph \(G = (\mathcal{X}, \mathcal{X} \times \mathcal{X}, W)\), where \(W\) is the weighting matrix containing costs of direct communication between sensor nodes \(i\) and \(j\), i.e. \([W]_{ij} = w(||x_i - x_j||)\). Dijkstra’s algorithm [15] is then used to compute a set of minimum cost paths from the central node to all other nodes requiring \(O(n^2)\) operations; the total minimum cost \(E_{true}\) is then the total sum of weights along each of these paths. Note that because our assumed \(\alpha\) is greater than one, all hops in any optimal path in a cutset network will connect neighboring sensors.

This cost can be estimated using fewer computations. Suppose we are given a function \(c(r, \phi)\) that estimates the cost of transmitting a packet from a sensor at radius \(r\) and angle \(\phi\) to the central node \(x_0 = 0\). The total minimum energy is approximately

\[
E_{true} \approx E_{sum} = \sum_{i=1}^{n} c(||x_i||, \angle x_i).
\]

This sum requires \(O(n)\) operations. Expressions for \(c(r, \phi)\) for three different cutset networks are given in Table 1. These expressions are derived under the assertion that all minimum cost paths follow the cell boundaries of the tessellation that generated the cutset network. If \(n\) is large (specifically, the density \(n/\pi R^2\) is large), then we may be able to model its local sensor density with some \(\rho(r, \phi)\). The total minimum energy is approximately

\[
E_{true} \approx E_{int} = \int_{0}^{R} \int_{0}^{2\pi} \rho(r, \phi) c(r, \phi) r dr d\phi.
\]

For large networks based on tessellations, we approximate \(c(r, \phi)\) as a constant \(\rho\) and derive closed-form expressions for \(E_{int}\); these are given in Table 1. When \(k\) is large and \(k, R, \rho\) and \(\alpha\) are fixed, hexagonal networks require the least energy. Specifically, Manhattan networks and triangular networks require \(3^{(\alpha-1)/2}\) and \(4^{3\alpha/2}\) more energy than honeycomb networks, respectively.

Fig. 2 compares the output of Dijkstra’s algorithm to the sum and integral approximations for \(\rho = 250/\pi R^2\) and \(R = 50m\). These approximations performed reasonably well. As expected, the honeycomb networks outperformed the other networks for fixed \(k\). A misleading part of Fig. 2 is that the honeycomb network consumed less energy than predicted and required more energy for \(k = 5\) than 4. This occurred because the \(k = 4\) network contained only 235 sensors, whereas the \(k = 5\) network contained 259. Actually, because \(\lambda\) decreases, the energy-per-sensor decreased from \(k = 4\) to \(k = 5\).
We suspect two phenomenon contribute to the energy efficiency of honeycomb networks; both are derived from the assertion that cheapest paths in cutset networks lie along tessellation edges. First, the recently proven [16] “honeycomb conjecture” states that “any partition of the plane into regions of equal area has perimeter at least that of the regular hexagonal honeycomb tiling” [16]. Combining this with our assertion suggests that the sensor spacing λ may be smallest for honeycomb networks at fixed k and density ρ. Secondly, the cheapest communication path typically deviates less from an ideal straight-line path for Honeycomb networks than for the other networks. These hypotheses warrant further investigation.

3. NOISE MODELS FOR ENERGY-BASED SINGLE SOURCE LOCALIZATION

Let us now investigate the performance of cutset networks in the source localization problem. Suppose a source at location $\theta \in B_R$ is emitting electromagnetic or acoustic waves. Our goal is to estimate θ using noisy measurements of the received signal strength. Let $\mathbf{y}(\theta) \in \mathbb{R}^n$ denote a vector of RSS at the sensor nodes under no noise. If the sensors are sufficiently far apart (no closer than some $\epsilon > 0$), we can assume the following far-field sensing model, where the ith element of $\mathbf{y}(\theta)$ is modeled according to

$$ y_i = |\mathbf{r}_i(\theta) + \mathbf{u}_i, $$

where \mathbf{r}_i is the reference power of the signal at a meter and β is some sensing path-loss exponent, typically between 2 and 4 [17].

We consider two noise models: the Additive White Gaussian Noise (AWGN) model and the log-normal (LN) model. Excellent descriptions of both models are given in [17, 18]. Under the AWGN model, the observed RSS at node i is

$$ y_i = |\mathbf{r}_i(\theta) + \mathbf{u}_i, $$

where each u_i is zero-mean i.i.d. Gaussian noise with variance σ^2. Thus, our observations $\mathbf{y} = [y_i]_{i=1}^n$ are distributed as $\mathcal{N}(\mathbf{y}(\theta), \sigma^2 I)$. In our experiments, we thresholded any negative y_i value to zero in order to avoid negative RSS readings.

The log-normal model is slightly more realistic than the AWGN model, as it as been observed in practice [19–22] and derived analytically [23]. Under the LN model, observations are Gaussian in the log domain, i.e. the RSS in dB at the ith sensor node is

$$ y_i,db = 10\log_{10} y_i(\theta) + v_i, $$

where each v_i is zero-mean i.i.d. Gaussian noise with known standard deviation σ_{db}. Our vector of observations $\mathbf{y}_d = [y_i,db]_{i=1}^n$ is normally distributed as $\mathcal{N}(\mathbf{10log}_{10} \mathbf{y}(\theta), \sigma_{db})$, where the \log_{10} is an abuse of notation denoting an element-wise logarithm. The standard deviation σ_{db} is typically observed to be between 4 and 12 [20].

3.1. Cramér–Rao Bounds

We briefly derive the Cramér–Rao bounds (CRB’s) for these models. The reader may refer to [17, 18] for more thorough derivations.

Our goal is to estimate $\theta = [\theta_1, \theta_2]^T$ from RSS observations y_i. If \mathbf{z} is a random vector distributed as $\mathcal{N}(\mathbf{\mu}(\theta), \sigma^2 I)$, then the jk-th element of the Fisher information matrix F is

$$ [F]_{jk} = \frac{\partial^2 \mu_j}{\partial \theta_k \partial \theta_j}. $$

The variance of any unbiased estimator of the jth unknown coordinate θ_j given some observations \mathbf{z} is lower bounded according to Var($\hat{\theta}_j$) $\geq F^{-1}_{jj}$; this is known as the Cramér–Rao Bound. Under the AWGN model, $\mathbf{z} = \mathbf{y}$ and

$$ \frac{\partial \sigma_j^2}{\partial \theta_j} = \beta A \frac{(x_{ij} - \theta_j)}{||x_i - \theta||^{\beta+2}}. $$

Similarly, under the LN model, $\mathbf{z} = 10\log_{10} \mathbf{y}(\theta)$, and

$$ \frac{\partial (10\log_{10} \mathbf{y}_d)}{\partial \theta_j} = \frac{10\beta}{\ln 10} \frac{(x_{ij} - \theta_j)}{||x_i - \theta||^{\beta+2}}. $$

These derivatives are easily computable, and the CRB can be calculated via an inversion of the 2×2 Fisher information matrix F.

3.2. Maximum Likelihood Estimation

Given some or all sensor observations y_i, under both noise models, the maximum likelihood (ML) solution can be found by minimizing the negative-log likelihood function. Under the AWGN model, the ML solution is given by solving the nonlinear least-squares problem

$$ \hat{\theta}_{ML} = \arg\min_{\theta} \sum_{i=1}^n y_i - y_i(\theta). $$
Similarly, under the LN model, the ML solution is given by
\[
\hat{\theta}_{ML} = \arg\min_{\theta} \sum_{i=1}^{n} \left[y_{i,\text{db}} - 10 \log_{10} \mathbb{P}_{i}(\theta) \right]^2.
\]

In centralized applications, all sensor data is transmitted to a central node or fusion center. Any methods provided in [18] can be used to solve this ML problem. We implemented their multiresolution search method, where \(\hat{\theta}_{ML} \) is calculated by substituting a large number of candidate \(\theta \) values on a grid, first at a coarse search resolution, and then at a fine resolution centered at the coarse estimate.

4. EXPERIMENTAL RESULTS

To compare the performance of various networks, we followed the following procedure. For a circular region \(B_R \) with radius \(R = 50 \), we generated networks of network density \(\rho = 250/\pi R^2 \) according to the process in Section 2. For a random network (Fig. 1(a)), the sensor positions were randomized for each trial. For deterministic networks, we generated Manhattan, triangular and honeycomb networks with \(k = \{1, 2, 3, 4, 5\} \). Note that \(k = 1 \) corresponds to the lattices shown in Fig. 1(b,c,d), and a triangular network with \(k = 1 \) is equivalent to a triangular network with \(k = 2 \) at the same density. Cutset networks with \(k = 5 \) are shown in Fig. 1(e,f,g). Energy usage was measured by calculating \(E_{\text{true}} \) using Dijkstra’s Algorithm, as described in Section 2. For each network type, 10,000 trials were performed for both the AWGN and LN noise models using reference powers \(A = 100 \), sensing path-loss \(\alpha = 2 \), communication path-loss \(\beta = 2 \), communication received-power \(P_0 = 1 \), AWGN noise variance \(\sigma^2 = 1 \), and log-normal noise standard deviation \(\sigma_{\text{db}} = 4 \).

In each trial, a random theta was placed uniformly near the center of the network within the red shaded regions in Fig. 1. The CRB was calculated for the current \(\theta \) value, a new realization of noisy data was generated, and the multiresolution MLE algorithm was performed to obtain an estimate \(\hat{\theta}_{ML} \) using a coarse grid search of 1m over the entire network, followed by a fine grid search of 0.01m centered at the coarse estimate. Upon completion of all trials, the average CRB along each coordinate \(\hat{\theta}_1 \) and \(\hat{\theta}_2 \) was calculated, and then the root-sum of these two average CRB’s was computed, obtaining a lower bound on Root Mean Squared Error (RMSE) under a uniform prior for \(\theta \). Additionally, the RMSE of the ML estimates were calculated. The results for both noise models are plotted in Figure 4. Figure 3 shows the results of an additional experiment designed to show the distribution of MLE errors for a \(k = 5 \) Manhattan grid.

Figure 4 shows how cutset networks offer significant increases in energy efficiency over random networks and lattice networks without surrendering much accuracy. This is shown in both the results of the MLE experiments and the average CRB calculations. The honeycomb networks with \(k = 4 \) had the greatest gains in energy efficiency, offering a factor of 2 improvement over random networks and lattices. These energy gains are even more significant for larger values of the communication path-loss exponent \(\alpha \). We note that an explanation was given in Section 2 for why energy increased from \(k = 4 \) to 5 for honeycomb networks. Finally, as expected, Figure 3 show how MLE performed much better near the intersection of Manhattan grid lines, and much worse near the center of squares where the distance to the nearest sensor was maximized.

5. CONCLUSIONS AND ACKNOWLEDGMENTS

Previously, it was found that Manhattan grid sensor deployments allow for a significant reduction in communication energy over random or lattice deployments with only a modest loss in error performance for the problem of decentralized RSS localization [8]. This new work provides analytical and experimental evidence for an identical performance–energy tradeoff, but in the context of a centralized RSS localization problem. Furthermore, in addition to Manhattan grid networks, this tradeoff is also observed in triangular and honeycomb networks. In particular, our results suggest that there may be a fundamental advantage of honeycomb networks over other networks in terms of energy efficiency, which should be further investigated in future research. More efficient, decentralized algorithms for solving the source localization problem in cutset networks, such as the algorithm in [8], should also be investigated. Finally, future work should consider communication issues in cutset networks, such as scheduling, routing, and bounds on network throughput.

The authors would like to thank Robert P. Dick of the University of Michigan EECS department for his helpful insights.
6. REFERENCES

