BLOCK-ADAPTIVE DCT-WIENER IMAGE UP-SAMPLING

Kwok-Wai Hung and Wan-Chi Siu

Department of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hong Kong

ABSTRACT

DCT-Wiener image up-sampling scheme is highly desirable since it makes use of the advantages of the information in both spatial and DCT domains. The idea is to combine the observed low-frequency DCT coefficients with the estimated high-frequency DCT coefficients obtained by the Wiener filters in the spatial domain. However, the available 1-D and 2-D Wiener filters that were proposed for high-frequency DCT coefficients estimation are block non-adaptive, mainly due to the limited information from the observed image. In this paper, we propose a block-adaptive Wiener filter by utilizing the information from external training data. During the online estimation, for each image block, the \(k \)-nearest relevant DCT LR-HR block pairs are searched from the training data, in order to estimate the coefficients of the Wiener filter. Experimental results show that the proposed block-adaptive Wiener filter improves the PSNR value of the DCT-Wiener scheme by 1.5 dB compared with that using non-adaptive 1-D Wiener filter.

Index Terms— DCT, Wiener filter, up-sampling

1. INTRODUCTION

Since the launch of HDTV formats 720p and 1080p, the old video formats, such as VCD and DVD are required to be up-sampled for displaying on the HDTV and 4k TV. Fortunately, there are high correlations between the high-resolution (HR) and low-resolution (LR) videos, such that many up-sampling algorithm were developed to up-sample the LR video by exploiting the correlations [1-4].

Digital videos are mostly coded using the block-based Discrete Cosine Transform (DCT) for high compression efficiency [5-6]. Due to the convenience, some approaches have been proposed to develop re-sizing [7-20] (up-sample [7-11] and down-sample [12]) methods directly in the block DCT domain. Since the introduction of the DCT-Wiener schemes [9-10], the performance (in terms of PSNR) of the up-sample methods have been significantly improved. The idea is to preserve the observed low-frequency DCT coefficients in the down-sampled low-resolution image, while estimating the high-frequency DCT coefficients (that were truncated during the down-sampling process) by the 1-D and 2-D non-adaptive Wiener filters [10, 21].

Hung and Siu [10] discovered that the 1-D 6-tap Wiener filter for motion compensation is not appropriate for estimating the high-frequency DCT coefficients due to the phase-shift issue and non-optimized filter coefficients. Hence, they proposed to train a 2-D non-separable 6x6 Wiener filter using the Lena image. This is to minimize the mean squares error of the Wiener filter that estimates the high-frequency DCT blocks from the low-frequency DCT blocks.

In this paper, we address the major weakness of previous block non-adaptive Wiener filters [9-10] by proposing a block adaptive Wiener filter to estimate the high-frequency DCT coefficients. Different from adaptive Wiener filters used in the video coding applications [22-24] that requires the reference picture (original HR image) to estimate the block-adaptive filter coefficients, our approach makes use of the learning-based minimum mean squares error estimation [27] to search for the relevant information from training data to estimate the filter coefficients for each image block. As a result, the proposed block-adaptive Wiener filter does not require the original image and significantly improves the available block non-adaptive Wiener filters [10, 21].

The rest of organization of this paper is as follows. Section 2 describes the basic structure of the proposed block-adaptive DCT-Wiener scheme. Section 3 explains the proposed block-adaptive Wiener filter. Experimental results are given in Section 4, and Section 5 concludes the paper.

2. BLOCK-ADAPTIVE DCT-WIENER SCHEME

2.1. Structure of the proposed scheme

Figure 1 illustrates the basic structure of the proposed DCT-Wiener scheme, which is essentially the same as the hybrid schemes in the literature [9-10], except that we propose a block-adaptive Wiener filter for up-sampling a LR block in the spatial domain. The up-sampled HR block is then DCT transformed for retaining the high-frequency DCT coefficients, which is the most important information contributed to the sharpness and fidelity of the up-sampled image, as justified in the experimental Section. Finally, the LF and HF coefficients are combined to form the HR block.
2.2. Why is block-adaptive Wiener filter?

The major reason for developing a block-adaptive Wiener filter is to accommodate different DCT block characteristics by tuning the filter coefficients accordingly. The key to tune the filter coefficients is to carry out a searching process to identify the k-nearest neighboring DCT LR-HR block pairs from the external training data. The k-nearest block pairs are used as training samples of the Wiener filter for the linear weighted minimal mean squares error estimation. Given a sufficiently good searching criterion and a representative dictionary, the reconstruction error of the block-adaptive Wiener filter estimated from the training data is much lower than that of the fixed and non-adaptive Wiener filters.

From the point of view in the classification theory [27], the non-adaptive Wiener filter assumes that there is only 1 class of data, where the filter coefficients were optimized for this unique class. The block-adaptive Wiener filter suggested in this paper further interprets the data into an infinite number of classes by searching k-nearest block pairs which constitute and define a new class for the optimization in each image block. Specifically, the k-nearest block pairs that constitute the new class are used to optimize the filter coefficients. The closest approach [1] to our proposed work is to search for k-nearest block pairs for estimating the HR blocks in the spatial domain; however, this approach is non-trivial and is not designed to estimate the high-frequency DCT coefficients.

3. PROPOSED BLOCK-ADAPTIVE WIENER FILTER

3.1. Building the external training data

Given a training HR image $Y \in \mathbb{R}^{2n \times 2m}$, where $2n$ and $2m$ are dimensions of the HR image, we divide the HR image into Q non-overlapping blocks, represented by vectors, \{y_i\} $\in \mathbb{R}^{4p \times p}$, where $4p^2$ is the total number of pixels in each block, as illustrated in Figure 2. Moreover, we down-sample the training HR image in the DCT domain by truncating the high-frequency DCT coefficients [11], and denote the training LR image as $X \in \mathbb{R}^{n \times m}$. Similarly, we divide the LR image into non-overlapping blocks, \{x_i\} $\in \mathbb{R}^{p \times p}$, and overlapping blocks, \{u_i\} $\in \mathbb{R}^{(p+1) \times (p+1)}$. The overlapping blocks which have a slightly larger block size can accommodate the neighborhood area during the searching process, such that the searching accuracy can be improved [26]. Finally, we concatenate all vectors into matrices by grouping the vectors in an consecutive order. Note that the vectors with variances less than 48 are discarded. The formed the training data are as follows

\[
B_Y = [y_1 \ y_2 \ ... \ y_Q] \quad (1)
\]

\[
B_U = [u_1 \ u_2 \ ... \ u_Q] \quad (2)
\]

\[
B_X = [x_1 \ x_2 \ ... \ x_Q] \quad (3)
\]

where Q is the total number of vectors (blocks). In this paper, we use 24 training images as shown in Figure 4 to constitute around 220,000 blocks in matrices of training data Eq. (1)-(3).

3.2. Online estimation

Given an observed LR image $X \in \mathbb{R}^{n \times m}$, we divide the image into non-overlapping blocks, represented by vectors, \{x_i\} $\in \mathbb{R}^{p \times p}$, and overlapping blocks \{u_i\} $\in \mathbb{R}^{(p+1) \times (p+1)}$, as illustrated in Figure 3. Let us illustrate the estimation process for this observed LR block x as an example. As shown in Figure 3, we first compute the normalized correlation coefficients [25] between the observed block u, and all training blocks \{u_i\} from the training data B_U. The k
nearest training blocks from the training data B_{x}, which have the highest correlations with the observed block u, are selected by the following adaptive k-nearest neighbor (k-NN) criterion [1],

$$
\hat{k} = \arg\min_k \left| \sum_{j=1}^{k} Corr(u_j, u_j^{'}) \right| \quad \text{subject to} \quad Corr(u_j, u_j^{'}) \geq T_i \quad (4)
$$

where $\{u_j^{'}\}$ represents the blocks sorted from the highest correlations to the lowest correlations, such that

$$
Corr(u_j, u_j^{'}) \geq Corr(u_j, u_j^{'+1}) \quad \text{for} \quad \forall j \quad (5)
$$

and T_i is a threshold to be determined by the cross-validation [27]. Having obtained the index of the k-nearest training blocks using Eq. (4) and Eq. (5), we use the index to extract other k-nearest training blocks from the rest training data B_x and B_y, and group them into matrices, as follows

$$
T_x = [x_1 \quad x_1^{'}, \ldots, x_k^{'}] \quad (6)
$$

$$
T_y = [y_1 \quad y_1^{'}, \ldots, y_k^{'}] \quad (7)
$$

where $\{x_j^{'}\}$ and $\{y_j^{'}\}$ represent other k-nearest training blocks from the training data B_x and B_y. Let us model the weight of each pair of k-nearest LR-HR training data, i.e. $x_j^{'}$ and $y_j^{'}$, using the exponential function to decay the weight of that pair by the computed correlation value, as follows

$$
W_j = \exp(Corr(u_j, u_j^{'}).f) \quad (8)
$$

where W_j represents a diagonal element of the weighting matrix $W \in \mathbb{R}^{k \times k}$, which concatenates the weights of all training pairs, $\{x_j^{'}\}$ and $\{y_j^{'}\}$, and f is a parameter to be determined using cross-validation. Hence, the linear weighted MMSE estimation is performed as follows [1, 27]

$$
\hat{H}_i = T_y W T_x^T (T_x W T_x^T)^{-1} \quad (9)
$$

where $H_i \in \mathbb{R}^{p \times p}$ is filter coefficients of the Wiener filter, i.e., the linear MMSE estimator. Eventually, the observed vector x_i is multiplied with the filter coefficients obtained from Eq. (9) to give the estimated HR block

$$
\hat{y}_i = \hat{H}_i x_i \quad (10)
$$

For reducing blocking artifacts, in our implementation, we artificially shift the observed LR image by [-1, 2] in both dimensions, i.e., shift for 16 times, in order to obtain 16 different estimates of each high-resolution pixel. Then, we average the 16 estimates to give the final results.

4. EXPERIMENTAL RESULTS

The experimental works were done on an Intel i7 3GHz system. As we have explained, several parameters of our learning-based Wiener filter were optimized empirically through cross-validation, where the values are shown in Table 1. Eight CIF (352×288) and two 720p (1280×720) video sequences, as shown in Figure 5, were down-sampled by two times by truncating the high-frequency DCT coefficients in every image blocks of size 8×8 [11].

Different state-of-the-art methods, including the bicubic interpolation, zero padding [14], overlapping zero padding [7], 1-D non-adaptive Wiener filter [21], hybrid DCT-Wiener scheme [9], and the proposed block-adaptive DCT-Wiener scheme, were applied to up-sample the Y-components of all video frames. The UV components of video frames were up-sampled by the bicubic interpolation. PSNR-Y and SSIM-Y [28] values were measured, as shown in Table 2.

The processing time for up-sampling a frame from QCIF (174×144) to CIF (352×288) is around 2 minutes using our non-optimized MATLAB codes. On the contrary, the 720p sequences require much longer processing time. The major computation comes from searching the k similar training pairs from the training data consisting of around 220,000 training pairs. Subjective comparisons are shown in Figure 6. Sample locations to give notice are indicated by red arrows in this Figure. In general, the proposed up-sampling scheme produces pictures with the highest fidelity to the original high-resolution image, especially for the explicit object boundaries in the Foreman (Figure 6) sequences.

The PSNR and SSIM measurements in Table 2 verify the subjective improvement observed in Figure 6. Specifically, the proposed scheme has the advantage of more than 1 dB in PSNR and around 0.03 in SSIM improvement comparing with the state-of-the-art methods in the literature. In other words, the proposed scheme significantly improves the available methods measured by subjective and objective evaluations.
Table 1 The parameter settings of the proposed learning-based Wiener filter

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Explanation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Block size for down-sampling and up-sampling</td>
<td>4</td>
</tr>
<tr>
<td>T_1</td>
<td>Threshold for adaptive k-NN in Eq. (4)</td>
<td>350</td>
</tr>
<tr>
<td>f</td>
<td>Weighting function parameter in Eq. (8)</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 2 PSNR-Y (dB) and M-SSIM of (a) Zero padding [14], (b) overlapping zero padding [7], (c) bicubic interpolation, (d) 1-D non-adaptive Wiener filter [21], (e) DCT-Wiener scheme [9], and (f) proposed scheme

<table>
<thead>
<tr>
<th>Videos</th>
<th>PSNR-Y (dB)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akiyo (CIF)</td>
<td>34.778</td>
<td>35.208</td>
<td>34.701</td>
<td>31.628</td>
<td>34.954</td>
<td>37.905</td>
<td></td>
</tr>
<tr>
<td>Container (CIF)</td>
<td>27.331</td>
<td>27.635</td>
<td>27.110</td>
<td>24.983</td>
<td>27.276</td>
<td>29.004</td>
<td></td>
</tr>
<tr>
<td>Football (CIF)</td>
<td>32.231</td>
<td>32.748</td>
<td>32.184</td>
<td>28.865</td>
<td>32.141</td>
<td>34.452</td>
<td></td>
</tr>
<tr>
<td>Foreman (CIF)</td>
<td>31.588</td>
<td>31.478</td>
<td>31.135</td>
<td>29.394</td>
<td>31.938</td>
<td>32.738</td>
<td></td>
</tr>
<tr>
<td>Crew (720p)</td>
<td>38.588</td>
<td>39.037</td>
<td>38.461</td>
<td>35.107</td>
<td>38.757</td>
<td>40.120</td>
<td></td>
</tr>
<tr>
<td>BigShips (720p)</td>
<td>33.391</td>
<td>33.572</td>
<td>33.206</td>
<td>30.882</td>
<td>33.481</td>
<td>34.727</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>29.982</td>
<td>30.275</td>
<td>29.814</td>
<td>27.348</td>
<td>30.072</td>
<td>31.695</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Videos</th>
<th>M-SSIM-Y</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akiyo (CIF)</td>
<td>0.9588</td>
<td>0.9640</td>
<td>0.9619</td>
<td>0.9396</td>
<td>0.9597</td>
<td>0.9768</td>
<td></td>
</tr>
<tr>
<td>Bus (CIF)</td>
<td>0.8465</td>
<td>0.8581</td>
<td>0.8400</td>
<td>0.7762</td>
<td>0.8489</td>
<td>0.8847</td>
<td></td>
</tr>
<tr>
<td>Container (CIF)</td>
<td>0.8738</td>
<td>0.8845</td>
<td>0.8731</td>
<td>0.8286</td>
<td>0.8743</td>
<td>0.9056</td>
<td></td>
</tr>
<tr>
<td>Football (CIF)</td>
<td>0.9168</td>
<td>0.9262</td>
<td>0.9139</td>
<td>0.8690</td>
<td>0.9204</td>
<td>0.9381</td>
<td></td>
</tr>
<tr>
<td>Foreman (CIF)</td>
<td>0.9148</td>
<td>0.9183</td>
<td>0.9123</td>
<td>0.8843</td>
<td>0.9167</td>
<td>0.9308</td>
<td></td>
</tr>
<tr>
<td>Mobile (CIF)</td>
<td>0.7930</td>
<td>0.8072</td>
<td>0.7858</td>
<td>0.7181</td>
<td>0.7948</td>
<td>0.8534</td>
<td></td>
</tr>
<tr>
<td>News (CIF)</td>
<td>0.9354</td>
<td>0.9440</td>
<td>0.9392</td>
<td>0.9016</td>
<td>0.9357</td>
<td>0.9653</td>
<td></td>
</tr>
<tr>
<td>Paris (CIF)</td>
<td>0.8125</td>
<td>0.8160</td>
<td>0.8066</td>
<td>0.7524</td>
<td>0.8011</td>
<td>0.8521</td>
<td></td>
</tr>
<tr>
<td>Crew (720p)</td>
<td>0.9592</td>
<td>0.9611</td>
<td>0.9571</td>
<td>0.9339</td>
<td>0.9585</td>
<td>0.9658</td>
<td></td>
</tr>
<tr>
<td>BigShips (720p)</td>
<td>0.9151</td>
<td>0.9189</td>
<td>0.9121</td>
<td>0.8777</td>
<td>0.9152</td>
<td>0.9300</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.8926</td>
<td>0.8998</td>
<td>0.8902</td>
<td>0.8482</td>
<td>0.8925</td>
<td>0.9203</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6 shows that the proposed block-adaptive DCT-Wiener up-sampling scheme preserves the sharpness across edge orientation and the smoothness along edge orientation, which are the fundamental characteristics of sharp edges without artifacts. It further justified the reconstruction ability of high-frequency DCT coefficients of the proposed scheme, owning to the results that small details (such as teeth, eye, nose) are well reconstructed. Note that these tiny details may not have similar counterparts in our training images (Figure 4); however, the proposed scheme are very strong in de-ringing and avoiding artifacts by adaptively tuning the filter coefficients and averaging 16 estimates.

5. CONCLUSION

In this paper, we propose a learning-based Wiener filter which is block-adaptive according to the input LR image block, to estimate the HR block, in order to extract the high-frequency DCT coefficients. The proposed block-adaptive Wiener filter is incorporated into the DCT-Wiener scheme that combines the information from both spatial and DCT domain to up-sample an image which is assumed to be down-sampled in the DCT domain in various applications. Subjective and objective evaluations verify the highly competitive performance of the proposed Wiener filter for the DCT-Wiener scheme.

One of the future directions is to decrease the complexity of the proposed Wiener filter by pre-computing a fixed number of sets of filter coefficients for various image contents. During the online estimation, the search for k-nearest training pairs is avoided, in order to dramatically decrease the overall computation. It is anticipated that there will be a substantial performance drop by using fixed sets of filter coefficients; however, depending on the number of pre-computed filters, the overall performance should still be higher than the non-adaptive Wiener filter using one set of filter coefficients in previous approaches.

Acknowledgement: This work is supported by the Center for Signal Processing, the Hong Kong Polytechnic University and the Research Grant Council of the Hong Kong SAR Government (GRF: B-Q385).

Fig. 6 First frame of the reconstructed Foreman sequence for two times up-sampling. (Please look for the electronic version for a better perception.)
6. REFERENCES

