PERFORMANCE BOUNDS FOR JOINT ESTIMATION OF IONOSPHERIC AND TARGET PARAMETERS IN MIMO-OTH RADAR

Mao Li, Qian He*, Zishu He, and Rick S.Blum†

EE Department, Univ. of Electron. Sci. and Tech. of China, Chengdu, Sichuan 611731 China
†ECE Department, Lehigh University, Bethlehem, PA 18015 USA

ABSTRACT

Ionospheric information is required when estimating target parameters in skywave over-the-horizon (OTH) radar. Unlike the traditional OTH radar which uses only the measurements of ionospheric parameters obtained from an ionosonde to estimate the target parameters, the multiple-input multiple-output skywave OTH (MIMO-OTH) radar studied in this paper estimates the ionospheric and target parameters jointly by exploiting the data received by both the ionosonde and the radar receivers. Two scenarios where the prior distribution of the ionospheric parameters is either known or unknown are considered. For the case when ionospheric parameter prior distribution is unknown, the joint maximum likelihood (JML) estimator is investigated and the Cramér-Rao bound (CRB) is derived. For the case when the ionospheric parameter prior distribution is known, the hybrid maximum likelihood and the maximum a posteriori (ML/MAP) estimator is studied and the hybrid Cramér-Rao bound (HCRB) is developed.

Index Terms— MIMO-OTH radar, joint estimation, ionospheric parameters, target parameters.

1. INTRODUCTION

Sky wave over-the-horizon (OTH) radar operates in 3-30MHz, which can provide over the horizon detection of targets in large surveillance areas [1]. In recent years, multiple-input multiple-output (MIMO) radar techniques [2–7] have been applied to the OTH radar. In [8], a novel technique is developed for altitude estimation of a maneuvering target using a MIMO-OTH radar. The clutter mitigation performance of a MIMO-OTH radar is analyzed in [9].

In OTH radar, the non-stationary ionosphere helps determine the propagation paths for both transmitted and backscattered signals. Further, the performance of an OTH radar greatly depends on the accuracy with which the system knows the ionospheric parameters. The ionospheric parameters are usually estimated using an ionosonde [10]. Traditional OTH radar takes the estimated ionospheric parameters as known quantities and uses them for target parameter estimation [11–15]. Estimation errors of the ionospheric parameters introduced by the ionosonde can dramatically degrade the target parameter estimation performance of the OTH radar system. Actually, since both the transmitted and backscattered signals of OTH radar traverse through the ionosphere, the received signals should carry abundant information about the state of the ionosphere. The use of this information can improve the accuracy of target estimation.

In this paper, MIMO-OTH radar is employed to estimate the ionospheric and target parameters jointly, using the measurements from both the ionosonde and the radar system. The optimum estimators are presented for the cases where the ionospheric parameters have either a known and unknown prior distribution and the corresponding performance bounds are derived.

2. SIGNAL MODEL

Consider a MIMO-OTH radar with M transmitters and N receivers in a two-dimensional Cartesian space. The complex envelop of the signal transmitted by the mth transmitter is $\sqrt{E_m}s_m(t)$, where E_m is the transmitted energy and $s_m(t), m = 1, \ldots, M$, are a set of unit energy waveforms which are approximately orthogonal for any time delay τ and Doppler shift f_d of interest [7], such that $\int_{T_r} s_m(t)s_{m'}^*(t-\tau)e^{j2\pi f_d t}dt$ equals 1 for $m = m'$ and 0 for $m \neq m'$ and integration is taken over a pulse repetition interval T_r. For simplicity the flat-earth model is adopted. The positions of the mth transmitter and the nth receiver are denoted by $(x^T_m, 0)$ and $(x^R_n, 0)$, respectively\(^1\). Suppose a target is moving with constant velocity v along the x-axis and its initial position is $(x, 0)$, where x and v are assumed to be deterministic but unknown. We use a parabolic layer model [10] to describe the characteristics of the ionosphere, in which the electron density at height\(^2\) y is given by

\[^{1}\text{For simplicity, we assume the antennas and target are on a line but generalization is straightforward.}\]

\[^{2}\text{Throughout this paper, “height” means height above the ground.}\]
The group path velocity of light is modeled (1) [16], which is a unit impulse function. Assume that the noise components \(w_{mn} \) for different \(mn \) are independent, and that the target reflection coefficients and the noise are mutually independent. The term \(T_{mn}(\theta) \) in (3) is given by

\[
T_{mn}(\theta) = \left[e^{2\pi \varphi_{mn}(\theta, 1)}, \ldots, e^{2\pi \varphi_{mn}(\theta, K)} \right]^T
\]

where \(\varphi_{mn}(\theta, k) = -f_m \tau_{mn}(\theta, k) \) and \(f_m \) is the carrier frequency of the signal transmitted at transmitter \(m \). The time delay \(\tau_{mn}(\theta, k) \) corresponding to the \(mn \) path is given by \(\tau_{mn}(\theta, k) = P_m^B(\theta, k)/c + P_m^B(\theta, k)/c \) where \(c \) denotes the velocity of light and \(P_m^B(\theta, k) \) denotes the group path length [16] between the \(mn \)th transmitter and the target obtained from the parabolic layer modeled (1) [16], which is

\[
P_m^B(\theta, k) = \frac{2 f_m}{\sin \beta^B_m(\theta, k)} + ab \ln \frac{1 + b \sin \beta^B_m(\theta, k)}{1 - b \sin \beta^B_m(\theta, k)} \quad (5)
\]

with \(b = f_c/f_o \) and \(\beta^B_m(\theta, k) \) denoting the transmitting elevation angle which, according to the Breit-Tuve theorem [10], should satisfy

\[
\frac{2 y_o}{\sin \beta^B_m(\theta, k)} + ab \ln \frac{1 + b \sin \beta^B_m(\theta, k)}{1 - b \sin \beta^B_m(\theta, k)} = \frac{x + v k T_c - x_T^2}{\cos \beta^B_m(\theta, k)} \quad (6)
\]

The group path \(P_m^B(\theta, k) \) between the \(mn \)th receiver and the target can be derived in a similar way by replacing \(\beta^B_m(\theta, k) \) with \(\beta^R_n(\theta, k) \) and \(x_T^R \) in (5) and (6), where \(\beta^R_n(\theta, k) \) denotes the receiving elevation angle. For later use, we define a \(KMN \times 1 \) column vector

\[
r = [r_{11}^T, r_{12}^T, \ldots, r_{KN}^T, r_{N1}^T, \ldots, r_{NM}^T]^T
\]

(7) to stack the received signals from all paths.

3. Joint Estimation of Ionospheric and Target Parameters

Different from the conventional OTH radars, where the ionospheric parameters are estimated by the ionosonde independently and then passed to the OTH radar as known quantities for estimating target parameters, this section considers MIMO-OTH radar and estimates the ionospheric and target parameters jointly using the measurements obtained from both the ionosonde and the radar. The joint estimator is first derived for the case where the prior distribution of the ionospheric parameters is either known or unknown.

3.1. Estimation With Unknown Ionospheric Parameter Distribution

For the joint estimators, both the output of the ionosonde and the MIMO-OTH radar received signal vector in (7) are used as our measurements. Denote the ionosonde output by \(\hat{\psi} \), an estimate of the ionospheric parameter vector \(\psi \), which can be expressed as

\[
\hat{\psi} = \psi + w_{\hat{\psi}} \quad (8)
\]

where \(w_{\hat{\psi}} = \hat{\psi} - \psi \) denotes the ionosonde measurement error, which is assumed to be zero-mean Gaussian distributed with known variance \(V \).

When the prior distribution of the ionospheric parameter is unknown, the unknown parameter vector is deterministic unknown. Under the assumption that \(w_{mn}, \alpha_{mn} \) in (3), and \(w_{\hat{\psi}} \) in (8) are independent of each other, the likelihood function can be written as

\[
p(r, \hat{\psi} | \theta) = p(r | \psi, \theta) p(\psi | \theta) = p(r | \theta) p(\hat{\psi} | \psi) \quad (9)
\]

where, from (3) and (7),

\[
p(r | \theta) = \prod_{m=1}^{M} \prod_{n=1}^{N} p(r_{mn} | \theta) = \prod_{m=1}^{M} \prod_{n=1}^{N} p(r_{mn} | \theta) \quad (10)
\]

in which

\[
p(r_{mn} | \theta) = \frac{1}{\sqrt{\det(\pi C_{mn}(\theta))}} e^{-r_{mn}^T C_{mn}^{-1}(\theta) r_{mn}},
\]

\[
C_{mn}(\theta) = \sigma^2 I + E_m \sigma^2_{mn} T_{mn}^H(\theta) T_{mn}(\theta) T_{mn}^H(\theta),
\]

\[
C_{mn}^{-1}(\theta) = \frac{1}{\sigma^2} I - \frac{E_m \sigma^2_{mn}}{\sigma^2} (\sigma^2 + K E_m \sigma^2_{mn}) T_{mn}(\theta) T_{mn}^H(\theta),
\]

\[
\det(C_{mn}(\theta)) = \sigma^{2K} (1 + K E_m \sigma^2_{mn} / \sigma^2),
\]

and

\[
p(\hat{\psi} | \psi) = \frac{1}{\sqrt{\det(2\pi V)}} e^{-\frac{1}{2}(\hat{\psi} - \psi)^T V^{-1}(\hat{\psi} - \psi)} \quad (11)
\]
Thus, the joint maximum likelihood (JML) estimator is
\[\hat{\theta}_{JML} = \arg \max_{\theta} \ln p(r, \psi | \theta) \]
\[= \arg \max_{\theta} \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{E_m \sigma_{mn}^2}{\sigma^2 (\sigma^2 + K E_m \sigma_{mn}^2)} |r_m^T T_{mn} (\theta)|^2 \]
\[- \frac{1}{2} (\hat{\psi} - \psi) ^T V^{-1} (\hat{\psi} - \psi). \] (12)

3.2. Estimation With Known Ionospheric Parameter Distribution

Here we consider the scenario when the prior statistical information of the ionospheric parameters is available. Assume that the ionospheric parameter vector \(\psi \) is known to have a Gaussian prior distribution with mean \(\mu \) and covariance \(\Sigma \), such that
\[p(\psi) = \frac{1}{\sqrt{\det(2\pi \Sigma)}} e^{-\frac{1}{2}(\psi-\mu)^T \Sigma^{-1}(\psi-\mu)}. \] (13)

In this case, the unknown parameter vector \(\theta \) to be estimated is composed of both random unknowns and deterministic unknowns, so the hybrid maximum likelihood and maximum a posteriori (ML/MAP) method [17] is employed to estimate \(\theta \). Considering that the observations \(r \) and \(\psi \) are independent with each other, the joint probability density function (pdf) can be written as
\[p(r, \hat{\psi}, \psi; \phi) = p(r, \hat{\psi}; | \psi; \phi) p(\psi; \phi) = p(r | \theta) p(\psi | \phi) p(\phi). \]

Therefore, using (10), (11) and (13), the hybrid ML/MAP estimation can be obtained as
\[\hat{\theta}_{HML} = [\hat{\phi}_{ML}^T, \hat{\psi}_{MAP}^T]^T = \arg \max_{\theta} \ln p(r, \phi, \psi; \phi) \]
\[= \arg \max_{\theta} \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{E_m \sigma_{mn}^2}{\sigma^2 (\sigma^2 + K E_m \sigma_{mn}^2)} |r_m^T T_{mn} (\theta)|^2 \]
\[- \frac{1}{2} (\hat{\psi} - \psi) ^T V^{-1} (\hat{\psi} - \psi) = \frac{1}{2} (\hat{\psi} - \psi) ^T V^{-1} (\hat{\psi} - \psi). \] (14)

4. JOINT ESTIMATION BOUNDS

This section derives performance bounds for the joint estimation with unknown or known prior ionospheric parameter distribution.

4.1. CRB for Unknown Ionospheric Parameter Distribution Case

When the prior distribution of the ionospheric parameters is unavailable, the mean square error (MSE) of the joint estimation of the deterministic unknown parameter vector is lower bounded by the Cramer-Rao bound (CRB) [18]. The CRB equals to the inverse of Fisher information matrix (FIM). From (9), it can be derived that the FIM for the joint estimation is
\[J_F(\theta) = J_S(\theta) + J_I, \] (15)

where \(J_I \) describes the contribution of the ionosonde,
\[J_I = \mathbb{E}_{\psi} \left\{ \nabla_\theta \ln p(\psi | \psi) [\nabla_\theta \ln p(\psi | \psi)]^T \right\} = \begin{bmatrix} 0 & 0 \\ 0 & V^{-1} \end{bmatrix}, \]

and \(J_S(\theta) \) describes the contribution of the radar received data,
\[J_S(\theta) = \mathbb{E}_{r, \theta} \left\{ [\nabla_\theta \ln p(r | \theta)] [\nabla_\theta \ln p(r | \theta)]^T \right\} = \sum_{m=1}^{M} \sum_{n=1}^{N} J_{mn}(\theta). \] (16)

The MSE of the joint estimation of the ionospheric parameter vector \(\psi \), when the prior distribution of the ionospheric parameters is available, is lower bounded by the hybrid CRB (HCRB), which is the inverse of the hybrid information matrix [18]
\(J_{HB} = J_M + J_P, \)

(23)

where \(J_P \) is determined by the ionospheric parameter prior distribution,

\[
J_P = \begin{bmatrix} 0 & 0 \\ 0 & \Sigma^{-1} \end{bmatrix},
\]

(24)

and \(J_M \) describes the contribution of the measured data,

\[
J_M = \mathbb{E}_{\psi}\{J_F(\theta)\} = \mathbb{E}_{\psi}\{J_S(\theta)\} + J_I,
\]

(25)

in which \(J_S(\theta) \) and \(J_I \) are defined in (15). Therefore, taking the inverse of \(J_{HB} \), the HCRB associated with the estimate of \(\theta_i \) can be obtained as

\[
\text{HCRB}_i = \left[J_{HB}^{-1}\right]_{ii}, i = 1, \ldots, 5.
\]

(26)

5. NUMERICAL RESULTS

Consider a MIMO-OTHR radar system with \(M = 3 \) transmitters and \(N = 3 \) receivers located at \((0, 0), (1, 0), (2, 0) km\) and \((3, 0), (4, 0), (5, 0) km\), respectively. The carrier frequencies of the transmitted signals are set to 5, 10 and 15 MHz. Assume \(T_r = 0.02 s\), \(K = 500\) and \(E_m = E = 1 \). The variances of target reflection coefficients are set to 5, 10 and 15 MHz.

Assume \(T_r = 0.02 s\), \(K = 500\) and \(E_m = E = 1 \). The signal to noise ratio (SNR) is defined as \(\text{SNR} = \frac{E\sigma_n^2}{\sigma^2} \).

Without loss of generality and to reduce simulation load, assume that \(y_o, f_o, \) and \(v \) in \(\theta \) are known to be 110 km, 4 MHz, and \(20 m/s \) respectively, so that only the ionospheric height \(y_o \) and the target position \(x \) need to be estimated.

1) Examples for Unknown Ionospheric Parameter Distribution: Assume that the true values of the unknown parameters are \(y_o = 150 km \) and \(x = 1500 km \). In Figs.1(a) and 1(b), the MSEs of the JML estimates of \(y_o \) and \(x \) are plotted versus SNR, respectively. In both figures, we see that the curves for \(V = 10 \) are higher than the ones for \(V = 1 \), which implies that smaller \(V \) leads to better MSE performance, as expected. It is observed that the MSEs of the JML estimation are close to the CRBs, which verifies the correctness of the CRB derivation in Section 4.1. For comparison, in the same figures we also plot the MSEs obtained using the traditional estimation method (TEM), where the estimate \(\hat{y}_o \) of \(y_o \) is calculated by the ionosonde solely and then passed to the OTH radar which takes this estimated value as if it were the true value to further estimate \(x \). In this case the variance of the TEM for \(y_o \) is exactly equal to the error variance \(V \) (see the curves marked with squares in Fig.1(a)). In Fig.1(b), we find that the MSE of JML is smaller than that of TEM for all SNRs, which shows that the joint estimation is always superior to the non-joint estimation in the statistical sense. It is also seen that when the SNR is small, the MSE of TEM is close to the MSE of JML, but when the SNR exceeds a threshold (see arrows in the figures) the MSE of TEM is approximately constant and the gap between the MSE of TEM and MSE/CRB of JML increases with the increasing SNR. Intuitively, in the traditional OTH radars, the estimation error of \(\hat{y}_o \) is totally determined by the ionosonde, which cannot be improved even if the SNR of the radar received signals is large (see Fig.1(a)), and thus limits the estimation accuracy of \(x \). The JML estimation makes use of the received signals for the estimation of \(y_o \) and \(x \), which enables the improvement of the estimation accuracy for both \(y_o \) and \(x \) when the SNR becomes larger.

2) Examples for Known Ionospheric Parameter Distribution: Assume the prior distribution of the ionospheric parameter \(y_o \) is known to be Gaussian with mean \(\mu = 150 km \) and variance \(\Sigma = 10 km^2 \), such that the MIMO-OTHR radar can use this prior distribution for parameter estimation. The MSEs of the estimates obtained from the proposed joint estimation (ML/MAP) are plotted versus SNR in Figs.2(a) and 2(b). The MSE curves obtained using the traditional methods (TEM) are also provided for comparison. It is seen that the MSEs of ML/MAP estimation are close to the HCRBs, which verifies the correctness of the HCRB derivation in Section 4.2. Again, the solid curve for \(V = 10 \) it above the ones for \(V = 1 \), which indicates that smaller \(V \) leads to better MSE performance. It is observed that the proposed method always performs better than the tradition method. The performance gain is insignificant when the SNR is small, whereas as the SNR increases and exceeds a threshold the performance gain of the joint estimation is dramatic.

6. CONCLUSION

Joint estimation of the ionospheric and target parameters was studied for MIMO-OTHR radar. We presented JML and ML/MAP joint estimation for two scenarios where prior distribution of ionospheric parameters is either known or unknown, respectively. The CRB and HCRB associated with known and unknown prior distribution cases were developed. The simulation results showed that the proposed joint methods can improve the estimation accuracy of the target parameters via more effective usage of the radar received signals.
7. REFERENCES

