INTELLIGIBILITY DETECTION OF PATHOLOGICAL SPEECH USING ASYMMETRIC SPARSE KERNEL PARTIAL LEAST SQUARES CLASSIFIER

Dong-Yan Huang, Minghui Dong and Haizhou Li

Human Language Technology Department, Institute for Infocomm Research/A*STAR
#21-01 Connexis (South Tower), Singapore 138632

ABSTRACT

Pathological speech usually refers to the voice disorders resulting from atypicalities in voice and/or in the articulatory mechanisms due to disease, illness or other physical problem in the speech production system. It may increase unhealthy social behavior and voice abuse, and dramatically affect the patients’ quality of life. Therefore, automatic intelligibility detection of pathological speech has an important role in the opportune treatment of pathological voices. This paper proposes to use asymmetric sparse kernel partial least squares classifier (ASKPLSC) for intelligibility detection of pathological speech. The proposed approach achieves an un-weighted accuracy (UA) of 74.0%, which is 7.34% relative improvement of baseline system of an UA of 68.90% for the Pathology Sub-Challenge of INTERSPEECH 2012 Speaker Trait Challenge.

Index Terms— Pathological speech, intelligibility of speech, kernel function, sparse kernel partial least squares regression, asymmetric sparse kernel partial least squares classifier

1. INTRODUCTION

Verbal communication is important for our daily life. However, the quality of speech communication can be affected by the speech disorders, which can be the consequences of a variety of causes on the vocal production system. For example, head and neck cancers may cause the difficulties of speech understanding in the perception by others, and surgical treatment and other inventions can even result in a degenerating effect on patients’ production organ function, e.g. the quality of voice and speech. As there are many factors causing the pathological speech, their diagnostic assessment, choosing an appropriate treatment, and monitoring have attracted increasing attention in clinical domain. The pathological speech assessment is mainly based on the subjective judgment of trained professionals. This subjective evaluation suffers from dependency on the experience of the listener and on its consistency on judging pathological voice quality. Therefore, in clinical practice there is a great demand for objective and automatic methods for assessing and classifying pathological speech quality. It is desirable to provide the assessment medical devices featuring high accuracy, reliability, scalability and low cost of processing.

Previous research and studies have shown that a number of acoustic features such like voice quality features, prosodic features, phonemic features, perceptual features, automatic speech recognition based features have discriminative power for intelligibility classification of pathological speech [1, 2, 3]. They have been used for the automatic assessment of intelligibility for pathological speech. Although a large number of features have been developed for intelligibility assessment, the problem is still challenging because of the wide variability of characteristics of disordered speech. The relationship between the perceptual intelligibility and the abnormal variation of disordered speech is still an on-going study. The wide variability in speaker factors such like gender, age, native/non-native, dialectal, and the atypicalities in voices, makes the problem even tough. These issues are surely encountered in development of automatic intelligibility assessment system working in real world scenarios.

This paper aims to design intelligibility classification system using the database provided by the organizers for the Pathology Sub-Challenge (PSC) of Interspeech 2012 Speaker Trait Challenge [4]. The database consists of sentence-level speech in Dutch spoken by patients having head and neck cancer prior to and after concomitant chemo-radiation treatment [5]. Various location and size of tumors may have a detrimental effect on speech production mechanism, even resulting in intelligibility loss of the speech. Due to these physical properties of disordered speech, the acoustic features expose non-linearities. A few prosodic features have been shown to possess significant discriminative power in classifying intelligibility of pathological speech [2].

Among previous automatic intelligibility assessment systems, a semi-supervised sparse Gaussian processes has been proposed for modeling data [6], which showed higher accuracy classification than the baseline. They proposed a novel algorithm to greedily select a sparse subset of features and then use kernel PCA to compute a joint embedding of the training, development and test instances. Different from their approach, we propose asymmetric sparse kernel partial least squares approach for the prediction task. This novel approach
can achieve a performance of unweighted accuracy of 74.0 % on intelligibility detection at much lower cost processing time than the system of UA of 73.70 % [6].

This paper is organized as follows. In Section 2, we give a brief explanation about the baseline acoustic features and systems of the challenge, we explain each subsystem. Next, we present in detail asymmetric sparse kernel partial least squares classifier. Then, we show the experimental results and discuss the whole system. Finally, we conclude our study and provide directions for future work.

2. ACOUSTIC FEATURES

For the Pathology Sub-Challenge, the "NKI CCRT Speech Corpus" is used for intelligibility detection. This corpus consists of pathological Dutch speech spoken by patients prior to and after concomitant chemoradiotherapy (CCRT) due to the cancer of the head and neck. The baseline features are in total number of 6,125 and comprise low-level descriptors (LLDs), their first-order derivatives, and the functionals applied thereon. LLDs include energy, spectral and voicing related features. The baseline systems are a SVM and a random forest applying to those baseline features. We would like to study whether these feature sets are suitable well to our proposed approach for the automatic assessment of intelligibility for pathological speech.

2.1. Prosodic and intonational features

In the paper [7], the authors found that no-intelligible (NI) speakers have difficulty in pronouncing a few specific speech sounds, resulting in abnormal prosodic and intonational shapes. The F0 trajectory is not smooth for NI speakers. The phoneme and utterance level acoustic features have been proposed to distinguish the differences between I and NI speakers. Inspired by their work, we combine the features such like the F0 features, frame-based energy envelop, the spectral envelop, and the sum of auditory spectrum for describing the prosodic and intonation of speech. The discriminative power of these features for I/NI classes is tested by our proposed approach.

2.2. Voice quality features

It has been reported that laryngeal tumors can impede vocal fold movements, causing voice quality distortion [8]. These distortions (breathy, tense, hoarse, or modal voice) decreases dramatically the intelligibility. In our system, the voice quality features comprise logarithmic harmonics-to-noise ratio (HNR), loudness, RMS energy, sum of the Relative SpecTrAl (RASTA) style filtered auditory spectrum, zero-crossing-rate (ZCR), pitch by SHS + Viterbi smoothing, probability of voicing, as well as voice quality features such as Shimmer (Local). The harmonicity features attempt to capture the various form of periodicity disturbances in the acoustic signal. The pathological voices are characterized by loss of harmonicity. In order to capture the dynamics of a signal in terms of some relatively static acoustic parameters, the delta features, which estimate first derivatives of each feature dimension as a way of converting dynamic and contextual behavior into a relatively fixed point in the new feature space, are added into the set. The individual acoustic feature for discriminating the pathological voices has been investigated in various medical literature [6, 9, 10]. From the speech production point of view, these acoustic features should not be independent. The motivation of combination of aperiodicity features and noise features as a group is to understand the impact of the mutual information of acoustic features on the discrimination between normal and pathological voices.

2.3. Spectral features

The spectral features are the most widely used features in speech processing such as mel-frequency cepstral coefficients (MFCCs), the RASTA style filtered auditory spectra and spectral. In fact, some studies have adapted the techniques of Automatic Speaker Recognition (ASR) to pathological voice assessment [11]. Previous studies have shown that non-laryngeal tumors in the vocal tract can have a negative influence on articulation in speech production, for instance a shift in localization of articulation, modified articulatory tension and compensatory articulation [12]. These cause the changes in the spectral flux, spectral energy, psychoacoustic sharpness. In stead of selecting the traditional spectral features such as MFCCs, the spectral energy, flux, variance, Skewness, Kurtosis, slope, and their functionals are used for the assessment of intelligibility. These features capture the rate of speech, disfluency, and the mispronunciation of phones.

3. ASYMMETRIC SPARSE KERNEL PARTIAL LEAST SQUARES CLASSIFIER (ASKPLSC)

As the acoustic features expose non-linearities due to the physical properties of disordered speech, we apply a kernel function for modelling these non-linearities and asymmetric sparse kernel partial least squares classifier for the automatic intelligibility detection of the pathological speech.

3.1. Kernel Transformation

The kernel transform is achieved by calculating the similarity between elements for a finite set of features s_n, $i = 1, 2, \ldots, N$. There are many alternatives for kernel function like polynomial kernel, Gaussian kernel or sigmoid kernel. The covariance matrix of Gaussian K whose ij-th element is defined as

$$K(s_i, s_j) = \exp \left(-\frac{||s_i - s_j||^2}{2\sigma^2}\right)$$ (1)
where \(l \) is the width of a scale for the kernel. The selection of \(l \) is not highly crucial, usually it is enough to find a decent range for \(l \). In this paper, we use the Gaussian kernel since it is simple and efficient.

3.2. Kernel Normalization

To force the bias term of the conversion model to zero, kernel centering is used. Centering in the kernel space is not as obvious as in the original feature space, since the mean cannot be computed directly. In this paper, for training and testing kernel \(K(s_i, s_j) \), we apply mean and variance normalization (MVN) which transforms every column and row vectors of the feature matrix to a random variable with zero mean and unit variance.

3.3. Sparse Kernel Partial Least Squares Regression

Partial Least Squares (PLS), which aims to model the relationship between two data sets (blocks of variables) by means of score matrix (latent matrix), has attracted much attention for handling high-dimensionality and multicollinearity in several areas of scientific research. However, PLS cannot automatically select the relevant variables during dimension reduction step [13]. Due to this fact, Sparse Partial Least Squares is proposed by imposing sparsity on the dimension reduction step of KPLS. For consistent estimator and interpretable direction vectors, sparsity is imposed into dimension reduction step of KPLS.

Directly imposing the \(L_1 \) constraints to the original direction vectors \(a \) tends to be not sparse enough, and the problem is not convex. Instead, the SKPLS criterion is presented as a generalized regression formulation by imposing \(L_1 \) penalty into a surrogate of direction vector \(c \), which is close to \(a \):

\[
\min - \kappa a^T M a + (1 - \kappa)(c - a)^T M(c - a) + \lambda_1 |c|_1 + \lambda_2 |c|_2 \\
\text{s.t. } a^T a = 1
\]

where \(M = K^T Y Y^T K \). Note that the first \(L_1 \) penalty guarantees the sparsity of \(c \), while the second \(L_2 \) penalty keeps the potential singularity in \(M \) when solving \(c \). Letting \(c_1, \cdots, c_q \in \mathbb{R}^p \) denote the sparse surrogate direction vectors resulting from the SKPLS method, a classification rule and a bias can be obtained by performing standard LDA on the matrix \((Kc_1, \cdots, Kc_q) \).

3.4. SKPLS-based Asymmetric Pattern Classification

The SKPLS regression is able to classify the samples to close to their own center. According to our observation, the boundary of two classes always goes through the point \((0,0)\). For unbalanced binary classes, classification hyper plane can be further generated based on the method proposed in [14] to compensate the loss of the larger class dataset.

4. EXPERIMENTAL RESULTS

As an ASPLS-based classifier has been proposed for pathological speech detection [15], we would like to compare the performance of the proposed classifier with it as well as the state-of-the-art technologies.

An extensive acoustic feature set is provided by the organizers, which is extracted with openSMILE. The 6125-dimensional feature vectors are divided into 13 groups shown.
in Table 1 and employed our classifier to optimize performance of each. These groups are used to define different base Gaussian RBF kernels. We used speaker mean normalization on these feature sets to remove the effect of speaker variability. We noticed that the bias of optimal vectors is smaller than the non speaker normalization for all the subsets. As the speech in NCSC was recorded in different session, the session variability caused by different channel affects the system performance. Eigen-channel factor estimation technique has been previously proposed to solve a similar problem by minimizing the effect of speaker state channel variability [16]. As PLS aims at iteratively finding the dominant eigenvectors of the problem (4), the effect of session variability can be removed by PLS (KPLS, SPLS, SKPLS) regression.

The unweighted accuracies (UA)s are computed with ASKPLSC on training data. From Table 1, we observe that the features such as spectral, f0, log HNR, and Shimmer (local) appear to have significant discriminative power for the features such as spectral, f0, log HNR, and Shimmer

As PLS aims at iteratively finding the dominant eigenvectors of the problem (4), the effect of speaker state channel variability [16].

<table>
<thead>
<tr>
<th>System</th>
<th>dev set (%)</th>
<th>test set (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline SVM ([4])</td>
<td>61.1</td>
<td>68.0</td>
</tr>
<tr>
<td>Baseline RF ([4])</td>
<td>64.8</td>
<td>68.9</td>
</tr>
<tr>
<td>Joint classification([7])</td>
<td>79.9</td>
<td>76.8</td>
</tr>
<tr>
<td>S-GPR+KPCA ([6])</td>
<td>77.6</td>
<td>73.7</td>
</tr>
<tr>
<td>ASPLS ([15])</td>
<td>66.0</td>
<td>71.9</td>
</tr>
<tr>
<td>ASKPLS (1,2,4,5,8,9,12,13)</td>
<td>62.9</td>
<td>74.0</td>
</tr>
</tbody>
</table>

5. CONCLUSION

Automatic intelligibility detection of pathological speech has significant values in real-world applications in the medical domain. We proposed ASKPLSC to evaluate the discrimination capabilities of several acoustical feature sets for detecting the intelligibility of pathological speeches. The results showed that the modellings obtained by the proposed approach can detect the intelligibility of pathological speech, which match well the diagnostic assessment by experts. The system features fast and achieves an unweighted average recall performance of 74% on the test set, an improvement of 3% absolute gain over the reported baseline system accuracy of 68.90%. We continue to develop classifiers with high prediction accuracy for the automatic assessment of the pathological speech in the future.
6. REFERENCES

