Computationally simple DOA estimation of two resolved targets with a single snapshot

Philipp Heidenreich and Abdelhak M. Zoubir
Signal Processing Group, Technische Universität Darmstadt
Merckstrasse 25, Darmstadt 64283, Germany.
{pheiden,zoubir}@spg.tu-darmstadt.de

Abstract—Direction-of-arrival (DOA) estimation of two targets with a single snapshot plays an important role in many pulsed radar array applications. We consider the case when the targets are spaced by more than the beamwidth of the array. In this case, the conventional beamformer (BF) is able to resolve them, but results in biased DOA estimation due to the leakage effect. We propose computationally simple strategies to reduce this bias. The second method simply consists of a single iteration of the RELAX algorithm [7].

I. INTRODUCTION

A pulsed radar system with multiple receiving antennas can be used for target localization in terms of range, relative velocity and direction-of-arrival (DOA) [1]. An accurate description of the environment is required in many application, such as automotive radar for modern driver assistance systems [2]. Using radar pre-processing, which consists of pulse compression and an FFT over the pulses, the received sensor data can be divided into processing cells corresponding to range and relative velocity, each represented by a single snapshot [1]. There are some crucial situations, in which a superposition of two targets occur in relevant processing cells [2]. Generally, these cases demand computationally expensive methods for high-resolution DOA estimation, such as subspace-based or maximum likelihood methods [3], [4]. However, when the targets are spaced by more than the beamwidth of the array, the conventional beamformer (BF) is able to resolve them [5]. The BF is computationally simple, but results in biased estimation in the two-target case, due to leakage. This paper aims at developing computationally simple strategies for reducing this bias.

We remark that the bias can also be reduced by using windows with a reduced sidelobe level, but at the cost of a degraded resolution. An alternative approach for DOA estimation of resolved targets is to iteratively subtract the targets to perform approximately single-target DOA estimation with the BF, as described in [6] for the frequency estimation problem. This approach is conceptually equivalent with the RELAX algorithm [7].

II. SIGNAL MODEL

Consider the single snapshot model with two targets

\[x = s_1 a(\phi_1) + s_2 a(\phi_2) + n \]

where

\[a(\phi) = \frac{1}{\sqrt{M}} [1, e^{j\phi}, \ldots, e^{j(M-1)\phi}]^T \]

is the steering vector of a uniform linear array (ULA), and \(\phi_1 < \phi_2 \) are the DOA parameters in electrical angle; \(s_1 \) and \(s_2 \) are the corresponding target response parameters, and \(n \) is spatially white measurement noise. We consider the case such that \(\phi_2 - \phi_1 > \text{BW} \), where \(\text{BW} = 2\pi/M \) is the beamwidth of the array.

The BF spectrum is defined as

\[P(\phi) = |S(\phi)|^2 \]

where

\[S(\phi) = a(\phi)^H \text{diag}(w)x \]

is the spatial Fourier transform, and \(w \) contains the coefficients of a window function, normalized such that \(\|w\|^2 = M \). Given sufficiently high SNR, the two largest local maxima of \(P(\phi) \) are close to the true DOA parameters [5].

A. Motivation

Due to the leakage effect, the DOA estimates, obtained using the BF spectrum, can be strongly biased. This is demonstrated by the following example.

For convenience, we use variables

\[\delta = \phi_2 - \phi_1, \quad \varphi = \angle\{s_2\} - \angle\{s_1\} \]

to denote half angular separation and relative phase, respectively. Also, \(\phi_0 \) denotes the midpoint between \(\phi_1 \) and \(\phi_2 \).

Let us consider the noise-free case with \(|s_1| = |s_2| \), an array with \(M = 8 \) sensor elements and a rectangular window. For all combinations of \(\delta/\text{BW} \in [1.5, \ldots, 6.5] \) and \(\varphi \in [0, 2\pi] \), we determine the two largest local maxima of the BF spectrum in (2), denoted by \(\phi_{\text{BF},1} < \phi_{\text{BF},2} \). Figure 1 shows \(\phi_{\text{BF},1} - \phi_1 \), which corresponds to the bias of DOA estimation with the BF, due to leakage. It should be possible to exploit the observed regular structure.

In this paper, we present two computationally simple strategies to reduce this bias. The first is a novel method, which is based on the analysis of the noise-free BF spectrum and a local approximation with quadratic and linear functions. The second method simply consists of a single iteration of the RELAX algorithm [7].
A. Noise-free BF spectrum

Before introducing the proposed algorithm for bias reduction, we analyze the noise-free BF spectrum and the resulting bias of DOA estimation.

III. PROPOSED ALGORITHM

Before introducing the proposed algorithm for bias reduction, we analyze the noise-free BF spectrum and the resulting bias of DOA estimation.

A. Noise-free BF spectrum

In the noise-free case, the spatial Fourier transform is

\[S(\phi) = s_1 W(\phi - \phi_1) + s_2 W(\phi - \phi_2) \]

where we define

\[W(\phi - \phi_i) = a(\phi)^H \text{diag}(w)a(\phi_i), \quad i = 1, 2 \]

The noise-free BF spectrum is then given in (3) at the top of the next page. Note that the first two terms are auto-terms and show peaks at exactly \(\phi_1 \) and \(\phi_2 \), respectively. However, when superimposed, the sidelobes of the beampattern may slightly shift the peak locations. The last term is a cross-term and will further affect the peak locations. In the case with a single snapshot, the influence of the cross-term overshadows the effect of the sidelobes.

To analyze the bias caused by leakage, let us have a closer look at the terms \(|W(\phi - \phi_i)|^2 \) and \(W(\phi - \phi_1)W(\phi - \phi_2)^* \). For convenience, we begin with the rectangular window.

1) Rectangular window: For \(i = 1 \) and \(2 \), plugging in the definition, and after some simplification, we obtain

\[|W(\phi - \phi_i)|^2 = \frac{1}{M^2} \frac{\sin[(\phi - \phi_i)/2]^2}{\sin[(\phi - \phi_1)/2]^2} \]

which is the well-known squared periodic sinc function, centered around \(\phi_i \). In the vicinity of \(\phi_i \), it can be approximated locally as a quadratic function, given by \(\gamma_0 - \alpha(\phi - \phi_i)^2 \) with \(\alpha \approx \pi/\text{BW}^2 \).

After some simplifications, we also obtain

\[W(\phi - \phi_1)W(\phi - \phi_2)^* = e^{-j\delta(M - 1)/2}Q(\phi) \]

with real-valued function,

\[Q(\phi) = \frac{1}{M^2} \frac{\cos(\delta M/2) - \cos(\delta/2)}{\cos(\delta/2) - \cos(\phi - \phi_0)} \]

centered around \(\phi_0 \). Its shape only depends on \(\delta \). Now, we are able to express the cross-term in (3) as

\[2\text{Re}\{s_1s_2^* W(\phi - \phi_1)W(\phi - \phi_2)^*\} = 2|s_1||s_2|BQ(\phi) \]

with scaling term \(B = \cos(\varphi + \delta(M - 1)/2) \). In the vicinity of \(\phi_i \), \(Q(\phi) \) can be approximated locally as a linear function, given by \(\gamma_1 + \beta_1(\phi - \phi_i) \) with

\[\beta_1 = \lim_{\phi \to \phi_i} \frac{dQ(\phi)}{d\phi} \]

The limit does not exist. After applying l’Hôpital’s rule twice, we obtain

\[\beta_1 = \frac{\cos(\delta/2)\sin(\delta M/2) - M\sin(\delta/2)\cos(\delta M/2)}{2M\sin(\delta/2)^2} \]

\[\beta_2 = -\beta_1 \]

2) Other window functions: For window functions, other than the rectangular window, the local approximations are still valid, but expressions for \(\alpha \) and \(\beta_1 \) are more complicated and require numerical computation. \(\alpha \) can be determined by means of least-squares fitting, \(\beta_1 \) can be determined by employing the central-first-order finite difference, for small \(\Delta \).

\[\beta_1 \approx \frac{1}{2\Delta} [Q(\phi_1 + \Delta) - Q(\phi_1 - \Delta)] \]

where \(Q(\phi) = e^{j\delta(M - 1)/2}W(\phi - \phi_1)W(\phi - \phi_2)^* \).

Note that, for computational reasons, the values for \(\beta_1 \) can be stored in a 1-D lookup table as a function of \(\delta \).

3) DOA estimation bias: By applying the described local approximations in the vicinity of \(\phi_i \), the noise-free BF spectrum from (3) can be approximated as

\[\hat{\phi}_i(\phi) = |s_1|^2[\gamma_0 - \alpha(\phi - \phi_1)^2] + 2|s_1||s_2|B[\gamma_1 + \beta_1(\phi - \phi_1)] \]

where we have neglected the influence of the other auto-term. We can determine the two largest local maxima of the BF spectrum by equating the first derivative to zero,

\[\frac{d\hat{\phi}_i(\phi)}{d\phi} = -|s_1|^22\alpha(\phi - \phi_i) + 2|s_1||s_2|B\beta_1 \]

Rearranging terms and plugging in \(B \), we obtain

\[\phi_{\text{BF},1} = \phi_1 + \frac{|s_2|}{|s_1|} \frac{\cos(\varphi + \delta(M - 1)/2)}{\beta_1(\delta)} \]

\[\phi_{\text{BF},2} = \phi_2 - \frac{|s_1|}{|s_2|} \frac{\cos(\varphi + \delta(M - 1)/2)}{\beta_1(\delta)} \]

So the location of the maxima of the BF spectrum is equal to the true parameter plus a bias term, which depends on signal parameters \(|s_1|, \ |s_2|, \ \varphi \) and \(\delta \). Note that the bias term depends on a ratio between signal magnitudes, where the weaker target will have a larger DOA bias. We propose to obtain an enhanced estimator by subtracting this bias term.
\[P(\phi) = |s_1|^2|W(\phi - \phi_1)|^2 + |s_2|^2|W(\phi - \phi_2)|^2 + 2Re\{s_1s_2^*W(\phi - \phi_1)W(\phi - \phi_2)^*\} \]

(3)

B. Proposed algorithm for bias reduction

Now, consider model (1) with noise. The proposed algorithm for bias reduction is summarized as follows:

1) Evaluate the BF spectrum, determine the two largest local maxima, \(\hat{\phi}_{BF,1} \) and \(\hat{\phi}_{BF,2} \).
2) Estimate target response parameters for \(i = 1, 2 \)
\[\hat{s}_i = a(\hat{\phi}_{BF,i})^H x \]
3) Calculate \(\hat{\delta} \) and \(\hat{\varphi} \) from \(\hat{\phi}_{BF,1}, \hat{\phi}_{BF,2}, \hat{s}_1 \) and \(\hat{s}_2 \).
4) Determine \(\beta_1(\hat{\delta}) \) from a 1-D lookup table.
5) Estimate the corrected DOA parameters as
\[\hat{\phi}_1 = \hat{\phi}_{BF,1} - \frac{1}{\alpha} \frac{|s_2|}{|s_1|} \cos[\hat{\varphi} + \hat{\delta}(M - 1)/2]\beta_1(\hat{\delta}) \]
\[\hat{\phi}_2 = \hat{\phi}_{BF,2} + \frac{1}{\alpha} \frac{|s_1|}{|s_2|} \cos[\hat{\varphi} + \hat{\delta}(M - 1)/2]\beta_1(\hat{\delta}) \]

We remark that it is also possible to follow a 2-D lookup table approach, in which the full correction term from (4), but without \(|s_1| \) and \(|s_2| \), is computed numerically and stored in a 2-D lookup table of \(\delta \) and \(\varphi \), similar to Figure 1.

C. Computational aspects

Let \(\phi_k, k = 0, \ldots, K - 1 \) be the discrete grid, required for the spectral search; the step size is \(\Delta \phi = 2\pi/K \). The main part of the computational cost constitutes the evaluation of the BF spectrum in Step 1 in Section III-B, which can be efficiently computed by using an FFT of \(\text{diag}(w)\) \(x \), padded with \(K - M \) zeros.

Note that without increasing \(K \), we can improve the DOA estimation accuracy, using a quadratic interpolation [2], [6],
\[\hat{\phi}_i = \phi_{n[i]} + 0.5\Delta \phi \frac{P_{n[i]-1} - P_{n[i]+1}}{2P_{n[i]-1} - 2P_{n[i]+1}} \]
(5)
where \(n[i] \) and \(P_{n[i]} = P(\phi_{n[i]}) \) for \(i = 1, 2 \) are the index and spectral value, respectively, of the two largest local maxima.

The calculations required in Steps 3)-5) in Section III-B, which involve finding entries from lookup tables and simple scalar multiply-add operations, can be implemented efficiently and do not significantly contribute to the overall cost.

IV. RELAX FOR TWO TARGETS

The RELAX algorithm is an iterative technique for DOA estimation of multiple targets [7]. It aims at finding the maximum likelihood estimate (MLE), or non-linear least squares solution. For the case with two targets, this is to minimize
\[\| x - s_1a(\phi_1) - s_2a(\phi_2) \|^2 \]
(6)

w.r.t. \(\phi_1, \phi_2, s_1 \) and \(s_2 \). The principle of the RELAX algorithm is to iteratively subtract the present targets in order to perform approximately single-target DOA estimation with the BF, which corresponds to the MLE and does not suffer from leakage. Towards this end, let
\[x_i = x - s_{2-i+1}a(\hat{\phi}_{2-i+1}), \quad i = 1, 2 \]
where \(s_{2-i+1} \) and \(\hat{\phi}_{2-i+1} \) are assumed to be given. Then, the minimization of (6) w.r.t. \(\phi_i \) and \(s_i \) can be simplified to
\[\hat{\phi}_i = \arg\max_{\phi} |a(\phi_i)^H x_i|^2, \]
\[\hat{s}_i = a(\hat{\phi}_i)^H x_i, \]
(7)
respectively. Note that \(||a(\phi)||^2 = 1 \). Again, the cost function is simply the location of the dominant peak of the BF spectrum, with a rectangular window. Hence, it can also be efficiently computed by using an FFT. We have observed that, when the DOA estimates are obtained using a quadratic interpolation from (5), zero padding such that \(K = 4M \) produces satisfactory results. This will be demonstrated with simulations.

As described in [7], the RELAX algorithm, for the case with two targets, is summarized as follows:

1) Assume a single target present and estimate \(\hat{\phi}_1 \) and \(\hat{s}_1 \) from \(x \), as in (7).
2) Assume two targets present, compute
\[x_2 = x - \hat{s}_1a(\hat{\phi}_1) \]
using the previous estimates. Determine \(\hat{\phi}_2 \) and \(\hat{s}_2 \) from \(x_2 \), as in (7).
Next, compute
\[x_1 = x - \hat{s}_2a(\hat{\phi}_2) \]
and redetermine \(\hat{\phi}_1 \) and \(\hat{s}_1 \) from \(x_1 \).
3) Convergence check; if the relative change of (6) between two iterations is smaller than \(\epsilon = 0.01 \), stop. Otherwise, continue with Step 2.

Let \(J \) denote the number of iterations until convergence. The RELAX algorithm for two targets roughly requires \(2J + 1 \) times the computational cost of a standard DOA estimation with the BF, as described in Section III-C. Note that generally, the RELAX algorithm does not need the two targets to be resolved by the conventional BF. However, in this case, many iterations are required until convergence.

We remark that RELAX can also be implemented in the beamspace domain [8]. Instead of computing \(x_2, x_1 \), and their corresponding BF spectra explicitly in Step 2), we have
\[S_i(\hat{\phi}) = S(\phi) - s_{2-i+1}W(\phi - \hat{\phi}_{2-i+1}), \quad i = 1, 2 \]
where \(S(\phi) \) has been calculated in Step 1) and \(W(\phi) \), which is stored in a 1-D lookup table, only has to be scaled and shifted in each iteration. Note that this approach has a reduced computational cost.
V. SIMULATIONS

Consider an array with $M = 8$ elements and a Chebyshev window with 20 dB sidelobe attenuation. Two targets from ϕ_1 and ϕ_2 are simulated according to (1). For a fair assessment of the grid search DOA estimation, in each simulation run, we add a random jitter, distributed between $\pm \Delta \phi/2$, to the DOA parameters. We use $s_1 = 1$; target magnitude and phase of s_2 are simulated according to (1). For calculating estimation errors, we use physical angle as the DOA estimates in run m, and $MC = 5000$ is the number of Monte-Carlo runs. The proposed method for bias correction is compared with the conventional BF, and the RELAX algorithm, for a single iteration and until convergence. We also add the Cramér-Rao bound (CRB) [9]. For the spectral search, we use $K = 4M$.

In Figure 2, we show the simulations results versus angular separation δ (left) at SNR = 25 dB and versus SNR (right) at $\delta/BW = 2$. Due to leakage, the conventional BF results in an average error larger than 1°. Using the proposed method for bias correction, we are able to reduce the average error below 0.5° without significantly more computations. Note also that for $\delta > 1.5BW$, a single iteration of RELAX is very close to convergence, and almost achieves the CRB; the computational cost is roughly three times the computational cost of a standard DOA estimation with the BF.

VI. CONCLUSIONS

In this paper, we have considered the problem of DOA estimation of two resolved targets with a single snapshot. We have presented a novel method for bias reduction, which is based on the analysis of the noise-free BF spectrum and a local approximation. The presented method is computationally simple. The simulations results suggest that it achieves almost equivalent results with the RELAX algorithm in the moderate SNR case.

REFERENCES