FAST FACTORIZATIONS OF DISCRETE SINE TRANSFORMS OF TYPES VI AND VII

Ravi K. Chivukula
Qualcomm Inc.
5775 Morehouse Drive, San Diego, CA
rchivuku@qualcomm.com

Yuriy A. Reznik∗
InterDigital, Inc.
9710 Scranton Road, San Diego, CA
yreznik@ieee.org

ABSTRACT
Discrete Sine Transforms of types VI and VII (DST-VI/VII) have recently received considerable interest in video coding. In particular, it was shown that DST-VII offers good approximation for KLT of residual signals produced by spatial (Intra) prediction process. In this paper, we offer an additional argument for use of such transforms by showing that they allow fast computation. Specifically, we establish a mapping between \(N \)-point DST-VI/VII and an \(2N+1 \)-point Discrete Fourier Transform (DFT), apply known factorization techniques for the DFT, and show how unused parts of the resulting flowgraph can be pruned, producing factorizations of DST-VI/VII.

Index Terms— Video coding, intra prediction, sinusoidal transforms, DCT, DST, DST-VII, DFT, FFT, factorization, multiplicative complexity.

1. INTRODUCTION
The Discrete Cosine Transforms of types II and IV (DCT-II/IV) are among fundamental, well understood, and much appreciated tools in data compression. The DCT-II is used at the core of standards for image and video compression, such as JPEG, ITU-T H.26x-series, and MPEG 1-4 standards [2]. The DCT-IV is used in audio coding algorithms, such as ITU-T Rec. G.722.1, MPEG-4 AAC, and others [3]. Such transforms are very well studied, and a number of efficient techniques exist for computing DST-VI/VII indeed exist, and offer general technique for their construction. Next section contains definitions. Section 3 establishes mapping between \(N \)-point DST-VI/VII and \(2N+1 \)-point DFT. Section 4 describes our proposed method for construction of fast factorizations of DST-VII. Examples of fast factorizations of DST-VI/VII of lengths \(N = 4, 8 \) are also provided in Section 4.

2. DEFINITIONS

Hereafter, by \(N \) we will denote the length of input data sequence, by \(\Re(\cdot) \) and \(\Im(\cdot) \) we will denote real and imaginary parts of complex numbers, and by \(j = \sqrt{-1} \) we will denote imaginary unit.

Let \(x = x_0, \ldots, x_{N-1} \) be a sequence of real numbers (input signal). The Discrete Fourier Transform (DFT) over sequence \(x \) will be defined as:

\[
X_k^F = \sum_{n=0}^{N-1} x_n e^{-j \frac{2\pi kn}{N}}, \quad k = 0, \ldots, N-1.
\]

The Discrete Sine Transform of types VI and VII (DST-VI/VII) over \(x \) will be defined as follows:

\[
X_k^{VI} = \sum_{n=0}^{N-1} x_n \sin \left(\frac{\pi (2n+1)(k+1)}{2N+1} \right), \quad k = 0, \ldots, N-1,
\]
\[
X_k^{VII} = \sum_{n=0}^{N-1} x_n \sin \left(\frac{\pi (2k+1)(n+1)}{2N+1} \right), \quad k = 0, \ldots, N-1.
\]

We immediately notice, that DST-VII is simply a transpose of DST-VI, and so finding factorization for either one of them will be sufficient to show how to factorize both.

∗The work on this paper was done when second author was with Qualcomm Inc, San Diego, CA.

1For simplicity, we omit all normalization factors.
3. MAPPING BETWEEN DST-VI/VII AND DFT

In this section we will prove the following statement.

Theorem 1. Let \(x = x_0, \ldots, x_{N-1} \) be a real-valued input sequence. Define an intermediate \(2N + 1 \)-point sequence \(y = y_0, \ldots, y_{2N} \) as follows:

\[
\begin{align*}
y_0 &= 0, & n &= 0, \ldots, N, \\
y_{N+1+n} &= x_{2n}, & n &= 0, \ldots, \left\lfloor \frac{N}{2} \right\rfloor - 1, \\
y_{N+1+\lceil \frac{N}{2} \rceil + n} &= x_{2n \frac{N}{2} - 1 - 2n}, & n &= 0, \ldots, \left\lfloor \frac{N}{2} \right\rfloor - 1,
\end{align*}
\]

and compute DFT over it

\[
Y_k = \sum_{n=0}^{2N+1} y_n e^{-j \frac{2\pi kn}{2N+1}}; \quad k = 0, \ldots, 2N.
\]

Then:

\[
X_k^{VII} = \Im \left(Y_{2k+1} \right), \quad k = 0, \ldots, N - 1.
\]

is the DST-VII over \(x \).

Proof. Let’s take a look at DFT outputs \(k = 0, \ldots, N - 1 \):

\[
\Im \left[Y_{2k+1} \right] = -\sum_{n=1}^{2N} y_n \sin \frac{2\pi (2k + 1)n}{2N + 1} \\
= -\sum_{n=1}^{N} \left[y_{2n} \sin \frac{2\pi (2k + 1)n}{2N + 1} \\
+ y_{2N+1-n} \sin \frac{2\pi (2k + 1)(2N + 1 - n)}{2N + 1} \right].
\]

Since further \(y_n = 0, \quad n = 1, \ldots, N \), we have

\[
\Im \left[Y_{2k+1} \right] = \sum_{n=1}^{N} y_{2N+1-n} \sin \frac{2\pi (2k + 1)(2N + 1 - 2n)}{2N + 1},
\]

or by substitution \(n' = N - n \):

\[
\Im \left[Y_{2k+1} \right] = \sum_{n=0}^{0} y_{N+1+n} \sin \frac{\pi (2k + 1)(2n + 1)}{2N + 1}.
\]

Let’s now assume that \(N \) is even. Similar argument holds for odd \(N \). We write

\[
\Im \left[Y_{2k+1} \right] = \sum_{n=0}^{N-1} y_{N+1+n} \sin \frac{\pi (2k + 1)(2n + 1)}{2N + 1} \\
+ \sum_{n=0}^{N-1} y_{N+1+n} \sin \frac{\pi (2k + 1)(2n + N + 1)}{2N + 1} \\
+ \sum_{n=0}^{N-1} y_{N+1+n} \sin \frac{\pi (2k + 1)(2n + N + 1)}{2N + 1}
\]

\[
= X_k^{VII}.
\]

We show the flow-graph of mapping \(1 \) in Figure 1. It can be observed that DST-VII can be computed by simply producing particularly re-ordered and zero-padded sequence as input.
Fig. 2. Fast factorization of DST-VII of length 4.

4. FAST ALGORITHMS FOR COMPUTING DST-VI/VII OF LENGTHS N=4,8

Based on previous discussion, it follows that DST-VII transform can be constructed by following these steps:

- Use mapping between DST-VII and DFT;
- Select fast factorization of DFT of length $2N + 1$;
- Prune flow-graph of the DFT, leaving only paths leading to odd-indexed imaginary values, corresponding to outputs of DST-VII.

This produces the flow-graph for DST-VII. By reversing the direction we obtain flow-graph for DST-VI.

We now show how these steps can be carried out for construction of fast transforms of length N=4. We start with mapping (1). Then, we pick fast factorization of DFT of length 9. In this case, we use Winograd’s DFT module of length 9 described in [17, 18]. We show flow-graph of this algorithm in Figure 3. We use red color to show paths that are needed for computation of DST-VII. It can be easily observed that the remaining paths are irrelevant because they either receive zero input, or lead to real portion of DFT’s output. Final flow-graph for computing DST-VI is shown in Figure 2. Based on Figure 2 we can see that DST-VII of length 4 can be computed by using only 5 multiplications and 11 additions. Same complexity is required for computing DST-VI of length 4.

Same steps can also be repeated for construction of fast transforms of length N=8. In this case, we can use 17-point Winograd DFT module described in [18, 19]. We show the final flow-graph of length-8 DST-VII in Figure 4. This transform requires 21 multiplications and 77 additions.

5. REFERENCES

Fig. 3. Flow-graph of Winograd’s factorization of DFT of length 9. Paths that are needed for computation of DST-VII are shown in red.

Fig. 4. Flow-graph of fast factorization of DST-VII of length 8. Factors $C_{17}^{15} - C_{17}^{35}$ correspond to constants appearing in length $N = 17$ Winograd DFT factorization described in [19].

