Part B. The Fun Part

Applications of Topic Models to Signal Analysis
Overview of Topics

• Low-Rank Models of Signals
• Separation with Monophonic Mixtures
• Recognition in Mixtures
• Temporal demixing
• Pitch Tracking
• User Interfaces
• Multimodality
Learning Dictionaries

• Low-Rank Dictionaries

• Overcomplete Dictionaries

• Convolutive Dictionaries
Marginals of spectrograms

- The marginals of a 2-D distribution describe the distribution of the two involved variables:

 \[P(f) = \int P(f,t) dt \]

 \[P(t) = \int P(f,t) df \]

- In a “spectrogram distribution” these variables are time and frequency

- The marginals are the power spectrum and the signal envelope

 - Nothing special here

- Let’s move to PLCA now
Discovering Music

- Simple piano passage
 - Multiple notes
 - Variety in spectral and temporal distributions
 - Can’t be characterized by a single set of marginals
- Extracted marginals
 - Frequency marginals describe the spectra of the notes
 - Time marginals describe their corresponding energy in time
- Doesn’t require isolated notes
- Without supervision we have discovered musical structure!
Large scale version

• First six bars of Bach’s fugue XVI in Gm
Learning General Dictionaries

• Unlike music, not all sounds are cleanly composed out of discrete elements
 – But they are composed out of some elements!

• We can learn dictionaries for varying sounds
 – The frequency marginals of a PLCA decomposition of a sound’s spectrogram are the dictionary
 – Each dictionary will be unique to that sound
A Speech Dictionary

- Learned elements are characteristic spectra of speech
A Chime Dictionary

- For other sounds the learned elements are suitably adapted
The Geometry of the Dictionary

- Normalized magnitude spectra lie on a simplex
 - Each vertex is a frequency
 - Each point inside the simplex is a combination of frequencies
 - Each sound lies in its own space inside the simplex
Low-rank models

• Modeling the sound space

\[x_t(f) \sim \sum_z P(f \mid z) P_t(z) \]

• Model defines a convex hull
 – \(P(f \mid z) \) are the vertices
Shift-Invariant Dictionaries

- Regular dictionaries don’t capture temporal information of elements of a sound
 - Using shift-invariant PLCA we can do that

Shift-invariant Dictionary of Speech

- Shift-Invariant dictionaries include temporal elements of sound
 - e.g., in speech we get phones and their inflection
Source Separation

- Using PLCA for sound separation
- Supervised separation
- Semi-supervised separation
- Denoising
Defining the problem

\[x(t) \quad y(t) \]

\[m(t) = x(t) + y(t) \]

• An ill-defined problem!
 – “Single-channel source separation”
A Fundamental Assumption

- There's approximate additivity in the time/freq space
Ignoring the Time Dimension

- There’s approximate additivity in the time/freq space

- Which holds for each column independently
Representation on a simplex

• Factoring out column gains this becomes:
 \[\alpha x + \beta y = m \]
 – With constraints:
 \[
 x, y, m, \alpha, \beta \geq 0 \\
 \sum_{i} x_i = 1, \sum_{i} y_i = 1, \sum_{i} m_i = 1 \\
 \alpha + \beta = 1
 \]

• How do we estimate \(x, y \) given only \(m \)?
Direct search

- Each source lives on a source subspace
- We can try a direct search
 - For 10min training data
 - Each source is ~75,000 points
 - at ~2000 dimensions
 - For 10 sec mixture
 - About 1200 mixture points
 - 5,625,000,000 searches
 (per point!)
- Not very practical!
Low-rank models

• Modeling the source spaces

\[x_t(f) \sim \sum_z P(f \mid z) P_t(z) \]

• Model defines a convex hull
 – Bases \(P(f \mid z) \) are the vertices

• Estimate with EM:

 Posterior \(P_t(z \mid f) \propto P_t(z)P(f \mid z) \)

 Weights \(P_t(z) \propto \sum_f P_t(z \mid f)x_t(f) \)

 Bases \(P(f \mid z) \propto \sum_t P_t(z \mid f)x_t(f) \)
Basis models

- Decompose \(\mathbf{m} \) using known bases:

\[
\mathbf{m}_t(f) = P_t(x) \sum_z P_x(f | z) P_t(z | x) + P_t(y) \sum_z P_y(f | z) P_t(z | y)
\]

- Known mix
- Unknown source priors
- Known source models
- Unknown source model weights

- Same model as before:

\[
\begin{align*}
P_t(s, z | f) & \propto P_t(s) P_t(z | s) P(s | z) \\
P_t(z | s) & \propto \sum_f P_t(s, z | f) \mathbf{m}_t(f) \\
P_t(s) & \propto \sum_f \mathbf{m}_t(f) \sum_z P_t(s, z | f)
\end{align*}
\]
Obtaining the source estimates

• Explains mixture in terms of the source models

\[m_t \approx \hat{x}_t + \hat{y}_t \]

\[\hat{x}_t = \sum_f P_x(f \mid z)P_t(z, x) \]

\[\hat{y}_t = \sum_f P_y(f \mid z)P_t(z, y) \]

• Once we get \(x \) and \(y \) we can invert to waveforms
But ...

• The learned hulls can be too big
 – We risk source-hull overlaps which are bad

Bad case
Source hulls are practically identical

Desired case
Source hulls are tight and minimally overlapping
Tightening the source hulls

• Using sparse weights to minimize hull area

\[x_t(f) \sim \sum_z P(f \mid z) P_t(z) \]

• Shrinking \(P_t(z) \) forces bases to be closer to the training data

• How do we enforce sparsity?
 – We use the entropic prior
 • \(P(q) = e^{-H(q)} \)

Supervised separation

• A mixture will contain the frequency bases of the present sound classes appropriately mixed
 – Since we have a linear model we assume that spectra add linearly
 – Not too far from truth

• If we roughly know the frequency bases of the sounds in a mixture we can separate these sounds

• The catch: the sounds must have dissimilar spectral composition
 – Not too much though
In more detail

- Learn frequency bases of the sound classes in mixture
 - From examples outside the mixture data
- Estimate mixture weights for the known bases from the available mixture spectrogram
 - Assume that the mixture is made up from the known bases
- Do selective resyntheses of the mixture spectrogram using only the frequency bases of one sound type at a time
 - Use phase from the original mixture to back to time domain

Semi-supervised separation

- We usually don’t know the frequency marginals for all sounds in a mixture
 - We might only know some
- Complementary learning
 - Explain input with known marginals of some sounds
 - Explain mystery parts with a new set of learned marginals
 - Learn mixture weights as well to model the mixture
- Unknown sounds are treated as one new class we learn online
- Invert to time as before
Special case - denoising

- Very similar to a Wiener filter
 - Instead of a single and rigid noise model we have a dictionary describing the interfering sounds
- Can be done in two ways
 - Have model of noise, extract extras
 - Have model of target, remove extras
- Quality of results depends on how similar the noise is to the target
 - Superior performance for non-stationary noise removal
- Can also use additional temporal and co-occurrence constrains
 - Markovian structure, etc ...
Recognition in Mixtures

• Regular classification

• The Markov Selection Model
Classification and Sounds

• Using classifiers on mixtures is a shaky idea
 – Most classifiers return a winner-takes-all answer
 – Mixtures are not resolved properly
 \[P(x + y) \neq P(x) + P(y) \]

• We can use PLCA to alleviate this problem
 – Because our probabilities are additive!
Measuring the presence of marginals

- In PLCA there is a 1-to-1 mapping between frequency and time marginals
 - Spectrum $P(f \mid z_i)$ is modulated by $P(z_i) P(t \mid z_i)$
- The time marginals indicate amount of presence of frequency marginals across the input’s timeline
- The likelihood of $P(f \mid z_i)$ at time t is:

$$\sum \sum P(z_i) P(t \mid z_i)^{P(f,t)}$$
Sound recognition in mixtures

- Use known dictionaries to estimate presence of these sounds in a mixture

\[
P(f,t) = \sum_z P(z) \begin{bmatrix}
P_{shaker}(f | z) \\
P_{cymbals}(f | z) \\
P_{jingles}(f | z) \\
P_{pig}(f | z)
\end{bmatrix} \cdot \begin{bmatrix}
P_{shaker}(t | z) \\
P_{cymbals}(t | z) \\
P_{jingles}(t | z) \\
P_{pig}(t | z)
\end{bmatrix}
\]
Indexing Media with Mixtures

- Example of classifiers running on a movie
 - Notice how mixtures are properly resolved
A Unique Property

- With the PLCA model we have additivity
 \[P(x + y) = P(x) + P(y) \]

- This is a very powerful model for sounds
 - We can modify existing models to use it instead
The Markov Selection Model

- Use PLCA as a state model for an HMM
Decoding a speech mixture

- Decoding process
 - Consolidate dictionaries of sources
 - Analyze mixture using that dictionary
 - Use each source’s sub-dictionary to compute Markov model likelihoods

- Results in fast search
 - $O(KN^2)$ vs $O(N^{2K})$
 - N parallel Viterbi searches
Superimposed Digit Recognition

- Train on digits \{1,2,3,4,5\}
 - Obtain digit Markov selection models
- Run on mixtures of two mixed digits at a time
 - Pick the two models with highest likelihood
Speaker Separation Challenge Case

Correct classification %

Mixture type: 0dB, -3dB, -6dB, -9dB, Clean

Baseline: Green
Speaker 2: Red
Speaker 1: Blue

Missing Data Imputation

• Spectral holes happen!
 – User editing
 – Poor compression
 – Bandlimited sounds
 – Binary masking based algorithms
 – Aggressive background subtraction

• This results in audible effects we want to reverse

• How do we fill the spectral holes?
 – Lots of statistical approaches
Problem definition

• Given an input spectrogram $S_t(f)$ with missing values how can we obtain the most likely to be correct reconstruction?
 – We will only look into the magnitude part of the spectrogram (phase is easy to recover)

$$S_t(f) = \begin{cases}
S_t^o(f), \text{the observed values} \\
S_t^m(f), \text{the missing values}
\end{cases}$$

• We will gather available statistics from the input $S_t^o(f)$ in order to guess $S_t^m(f)$
 – Can also measure other representative examples

• This is a typical missing data imputation setup in the statistics literature
Traditional imputation approaches

• K-NN missing data imputation
 – 1. Ignoring missing values, find nearest neighbor to input
 – 2. Substitute missing values with neighbor’s values
 • Optionally average from multiple neighbors

• SVD-based missing data imputation
 – 1. Fill in random values for missing data
 – 2. Perform SVD
 – 3. Replace missing data with model approximation
 – 4. Go to 2 and repeat process until convergence

• Shortcomings
 – K-NN approach cannot model sound mixtures
 • Each datum can only take values from a known sample
 – SVD approach will produce negative values
 • This results into audible noise in reconstruction
Fully observable spectra

- Learning from intact examples
 - All frequencies exist in training data
 - Straightforward EM estimation

- Estimation equations:

 \[
P_t(z | f) = \frac{P_t(z)P(f | z)}{\sum_{z'} P_t(z')P(f | z')}, \quad P_t(z) = \sum_f P_t(z | f)S_t(f) \quad \frac{\sum_i P_t(z | f)S_t(f)}{\sum_f R \sum_i P_t(z' | f)S_t(f)}\]

- Reconstruction equations:

 \[
 \hat{S}_t^m(f) = \alpha_t \sum_z P_t(z)P(f | z), \forall f \in F^m, \quad \alpha_t = \sum_{\forall f \in F} \frac{S_t^o(f)}{\sum_z P_t(z)P(f | z)}
 \]

Partially observable spectra

- Previous formulation doesn’t work columns with missing data
- Estimation equations from input with missing data:

\[
P_t(z \mid f) = \frac{P_t(z)P(f \mid z)}{\sum_{z'} P_t(z')P(f \mid z')}
\]

\[
\hat{S}_t(f) = \begin{cases}
 \alpha_i \sum_z P_t(z)P(f \mid z), & \forall f \in \mathcal{F}^m \\
 S_t(f), & \forall f \in \mathcal{F}^o
\end{cases}, \quad \alpha_i = \sum_{\forall f \in \mathcal{F}^o} \sum_z P_t(z)P(f \mid z)
\]

- Similar to previous case, this time we iterate over an interim estimate
- We now simultaneously learn and fill-in the data
The simple version

- Fill holes with random values

- Repeat until convergence:
 - Learn a PLCA model using the filled hole data
 - Approximate the holes with PLCA model
Large-scale missing data example

- Filling in a large time/frequency gap
 - 4.3 sec × 3 kHz at its widest
- Model was trained on various instances of piano music in addition to the input itself
Random mask example

- 60% of input was missing through a random mask
- Training tool place on the input only

Upsampling example

- Filling in 75% of the upper frequency register
- Training was done on other rock music examples
Note that mixtures are resolved
Real-world usage – Sound removal

• Removing a sound from a recording
 – User deletes offending area in spectrogram
 – Model is learned from the recording and is used to reconstruct any of the missing data

Spectrogram of output
Real-world usage – Sound removal

- Removing a sound from a recording
 - User deletes offending area in spectrogram
 - Model is learned from the recording and is used to reconstruct any of the missing data

Spectrogram of mixture

Real-world usage – Compression recovery

- Extreme compression routines create spectral gaps
 - Same effect with aggressive background subtraction
- These gaps result in “musical noise”
- Using the proposed method we can fill the gaps and resolve the noise issues

[Images of missing data input, restored output, and ground truth]
Temporal Separation

- Temporally-aware Separation
- Dereverberation
- Markov Model-based Separation
PLCA vs Shift Invariant PLCA on audio

- Finding *repeating chunks* instead of *slices*
- Extracts short-time temporal structure
 - More informative description
 - Also less expressive
- Applicable to all previous examples
 - Separation, recognition, denoising, etc.
- Also probabilistic and easy to plug into meta-learning algorithms
Using Shift-Invariance to Remove Echoes

- Formulate reverberation as a time smearing:
 - Same as one component shift-invariant model
 \[P(f, t) = P_k(f, t) * P_I(t) \]
 \(P \) **Observation** \(P_k \) **Repeating Kernel** \(P_I \) **Reverberation (original source)** \(t \) **Impulse**
 - Very efficient for large problems

- Same idea applies to telephony echo cancellation
 - Robust to non-linear processing
 - No need for doubletalk detection
Markov Models for Separation

• We can also take a statistical look at temporal structure, and ignore rigid dependencies

• A PLCA Markov Model
 – Allows us to separate better when time matters
The Static Model

Dictionary of Source 1

Dictionary of Sound Mixture

Dictionary of Source 2

ICASSP 2011 Tutorial: Applications of Topic
Models for Signal Processing – Smaragdis, Raj
The HMM model

• Impose a Markov chain on dictionary transitions

Each source is modeled by a sequence of transitions across multiple dictionaries
N-FHMM Separation Comparison

- Source 1 - Saxophone playing C-E-G four times
- Source 2 - Saxophone playing G-E-C four times on the same octave
- Factorization completely fails. Both of the “separated” results sound and look like the mixture.
- The N-FHMM model still does a good job of separation.

Pitch Tracking Models

• Using the shift-invariant model for pitch tracking

• Naturally extends to polyphonic pitch tracking
PLCA for pitch tracking

- Constant-Q transform makes transposition a shift in frequency
 - Use shift-invariant analysis on that axis too
- Kernel will be source spectrum
- Impulse will be pitch probability function
- Doesn’t matter if the source is harmonic or not!
Tricky case 1: Double notes

- All common pitch trackers fail at tracking multiple notes
- Additive model/features are working out fine for us though
- Makes pitch tracking in noise easier
Tricky case 2: Inharmonic sounds

- Pitch percept and actual frequency are different things
- This approach relates to how we perceive pitch, not how physics explains it
- Output here is what we hear, not what’s technically true
Tricky case 3: Multiple pitch tracks

- Two-part example
 - Voice + bell mixture
 - “Weights” provide a rough pitch track for each source
 - Inharmonicity of bell is not an issue
 - Both spectral profiles are extracted

- Additivity saves us again here

- Once more this is still a zero assumption model!!
Applications on images

- Images can be interpreted as distributions as well
 - \{x,y,r,g,b\} photon counter
- Shift-invariant PLCA finds repeating patterns
- Extensions with other types of kernel variations (rotation, scale, ...)

Audio-visual example

- Input with correlated images and pictures
 - Results into multimodal features
 - Reveals key/note relationship
Removing audio/visual objects
Object-based editing

- Using modern tools, visual object selection is a trivial process
 - Enabling a new breed of content makers, which was not possible in the past
- This allows us to perform object-based editing

Moving towards the audio world

• Sounds superimpose
 – i.e., are transparent
 – How do you select the layer you want?
 – What’s behind matters now!

• Sounds are inherently 1-D
 – How do you select an object that’s all over the place?
Object-based editing in audio

- In audio things are not that intuitive
 - Popular visualizations do not have clear connections to auditory objects

- What is this input? Where are the objects?
Rethinking the audio interface

- Graphical interfaces for audio don’t provide the user with intuition

- Instead of drawing the target, have the user “mimic” the target
 - Vocalize, whistle, synthesize, ... anything that provides some hints that help segmentation

- This isn’t straightforward though ...
Fitting to the PLCA framework

\[
\left\{ P_u(f \mid z), P_u(t \mid z) \right\}
\]

\[
\begin{bmatrix}
P_t(f \mid z) \\
P_b(f \mid z)
\end{bmatrix}
\begin{bmatrix}
P_t(t \mid z) \\
P_b(t \mid z)
\end{bmatrix}
\]

Provides a dictionary and activations that fit intended source

Decompose mixture such that some of the extracted components use known elements as priors

Update with priors

\[
P_t(f \mid z) \propto \sum_i P(f, t) P(z \mid f, t) + \kappa P_u(f \mid z)
\]

Separate mixture using known approach, components with priors correspond to target

User input

Mixture input

Analysis

Segmentation result

Back to the original example

- User sings the vocal part to select
Back to the original example

- Coughing the snare drum
Inexact guidance

- Whistling to point to a guitar
Another inexact case

- Dense mixture with an approximate user guidance
More examples ...

• Idiot removal

• Singing off-key

• What are the lyrics?
Recap

• Source Separation Models
 – Supervised and semi-supervised
• Recognition in Mixtures
• Missing Data Applications
• Temporal Models
• Pitch Tracking
• Images and Multimodal data
• User Interfaces
Parting Thoughts

• Mixtures are important
 – We can’t rely on the good old $+ n(t)$

• Topic Models gracefully address the issue
 – Can easily substitute the Gaussian in many cases

• There is a wealth of models that can be modified as such and deal properly with mixtures
Bibliography

- Singh, R., B. Raj and P. Smaragdis. 2010. Latent-variable decomposition based dereverberation of monaural and multi-channel signals, in proceedings IEEE International Conference on Audio and Speech Signal Processing, Dallas, TX, USA March 2010. [PDF]