AUTOMATIC ESTIMATION OF THE SECOND SUBGLOTTAL RESONANCE FROM NATURAL SPEECH

Harish Arsikere* Steven M. Lulich†,‡ Abeer Alwan*

* Department of Electrical Engineering, University of California, Los Angeles
† Department of Psychology, Washington University, Saint Louis
‡ Department of Speech and Hearing Sciences, Indiana University, Bloomington

harishan@ucla.edu, slulich@wustl.edu, alwan@ee.ucla.edu

ABSTRACT

This paper deals with the automatic estimation of the second subglottal resonance (Sg2) from natural speech spoken by adults, since our previous work focused only on estimating Sg2 from isolated diphthongs. A new database comprising speech and subglottal data of native American English (AE) speakers and bilingual Spanish/English speakers was used for the analysis. Data from 11 speakers (6 females and 5 males) were used to derive an empirical relation among the second and third formant frequencies (F2 and F3) and Sg2. Using the derived relation, Sg2 was automatically estimated from voiced sounds in English and Spanish sentences spoken by 20 different speakers (10 males and 10 females). On average, the error in estimating Sg2 was less than 100 Hz in at least 9 isolated AE vowels and less than 40 Hz in continuous speech consisting of English or Spanish sentences.

Index Terms— subglottal resonances, automatic estimation, bilingual speech, speaker normalization

1. INTRODUCTION

Subglottal resonances (SGRs) have received increasing attention in the last few years, in both the speech science and engineering communities. It has been hypothesized that Sg2 defines the boundary between front and back vowels, and that the first subglottal resonance (Sg1) defines the boundary between high and low vowels [1, 2]. Strong evidence has recently been presented in support of the [±:back] division by Sg2 [3]. It has also been demonstrated that Sg2 affects the way humans perceive the distinctive feature [back] when F2 crosses Sg2 in transitioning from a high to a low value [4]. The fact that Sg2 lies at the boundary between front and back vowels has also been demonstrated in other languages [5, 6, 7].

Acoustic coupling between the subglottal system and the vocal tract has an influence on the frequencies and amplitudes of vowel formants. Chi and Sonderegger studied the influence of Sg2 on the second formant in detail [8]. They found that a discontinuity in F2 and a dip in the amplitude of the second formant (A2) can often be observed in the vicinity of Sg2 in back-to-front diphthongs of American English. Wang et al. [9] developed an algorithm for automatically estimating Sg2 from children’s speech based on the observations made in [8] and on a relation between F3 and Sg2 derived in [3]. In fact, the estimation algorithm was successfully applied to perform normalization and cross-language adaptation of children’s speech for use in Automatic Speech Recognition (ASR) tasks.

In this paper, algorithms are proposed to automatically estimate Sg2 in adults’ speech, based on the relation between two measures of vowel backness. Section 2 describes the database used. Section 3 describes novel methods for measuring Sg2, the procedure used for deriving an empirical relation among F2, F3 and Sg2, and the algorithms for automatically estimating Sg2 using the derived relation. The results of automatic estimation are presented in Section 4. Section 5 summarizes the paper.

2. DATABASE

A database comprising simultaneous speech and subglottal recordings was recently collected [10] with the intention of studying the properties of SGRs and their effects on speech. Speech data were recorded using a Shure PG27 condenser microphone and subglottal data were obtained using a K&K Sound ‘Hot Spot’ accelerometer. All recordings were sampled at 48 kHz and digitized at 16 bits/sample. The database consists of two sets. Set 1 comprises data from 25 female and 25 male adult native speakers of American English (AE) aged between 18 and 25 years. Set 2 comprises data from 4 female and 6 male adult bilingual speakers of Mexican Spanish and AE aged between 18 and 25 years. Every speaker was recorded in two sessions. The first session, which was common to all the speakers in Sets 1 and 2, involved recording 21 nonsense CVb words embedded in the phrase “I said a ____ again”, where ‘C’ was one of the voiced stops [b], [d] and [g] and ‘V’ was one of the vowels in column 1 of Table 1. For native AE speakers, the second session involved recording 14 nonsense hVd words embedded in the same carrier phrase, where ‘V’ was one of the vowels in column 2 of Table 1. The second session for bilingual speakers involved recording 21 nonsense CVb words embedded in the Spanish phrase “Diye una ____ otra vez”, where ‘C’ was one of the voiced stops [b], [d] and [g] and ‘V’ was one of the vowels in column 3 of Table 1. Each word was repeated 10 times by the native AE speakers and 7 times by bilingual speakers. The start, steady state and end times of the target vowel were labeled manually in each microphone recording. Data from only 31 subjects were used for the present study - 11 for training (6 females and 5 males in Set 1) and 20 for testing (8 fe-

<table>
<thead>
<tr>
<th>Sets I&2, Session 1</th>
<th>Set 1, Session 2</th>
<th>Set 2, Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[i], [r], [u], [u]</td>
<td>[i], [r], [a], [a], [i], [i], [o], [a], [u], [r]</td>
<td>[i], [e], [o], [u]</td>
</tr>
<tr>
<td>[a], [a], [a], [a]</td>
<td>[i], [a], [a], [a], [a], [a]</td>
<td>[a], [a], [a], [a]</td>
</tr>
</tbody>
</table>

Table 1. List of vowels recorded in sessions 1 and 2 for speakers in Set 1 (native AE) and Set 2 (bilingual). Monophthongs and diphthongs are listed above and below the double line, respectively.
males and 8 males in Set 1, 2 females and 2 males in Set 2). It must be noted that both isolated vowels and complete sentences (carrier phrases with target words) were used in our experiments.

3. METHODS

3.1. A Bark scale relation between F2, F3 and Sg2

An algorithm based on a linear relation between F3 and Sg2 was previously developed to estimate Sg2 in children’s speech [9]. A similar approach could not be used in the case of adults because F3 and Sg2 were found to be weakly correlated. We hypothesized, however, that the Bark difference between F3 and F2 (denoted \(f_3Df_2 \)) would be correlated with the Bark difference between F2 and Sg2 (denoted \(f_2Ds_2 \)), since both measures can be used to represent vowel backness [11, 3]. The relation between a frequency \(f \) in Hz and its corresponding Bark value \(z \) is given by [12]

\[
z = \left[(26.81f)/(1960 + f) \right] - 0.53 \quad (1)
\]

Front vowels have high F2, for which \(f_3Df_2 \) is usually less than 3 Bark. The converse is true for back vowels. Since \(f_3Df_2 \) can be computed readily from speech, our goal of automatic Sg2 estimation required finding a relation between \(f_3Df_2 \) and \(f_2Ds_2 \).

Data from 6 female speakers (14, 16, 18, 19, 20 and 24) and 5 male speakers (12, 13, 15, 17 and 21) belonging to Set 1 were used to derive a relation between \(f_3Df_2 \) and \(f_2Ds_2 \). First, the ground truth Sg2 of each speaker was obtained using 30 accelerometer and 6 microphone signals, as follows. Sg2 was directly measured in 3 accelerometer signals of each of the monophthongs recorded in Session 2, in a semi-automatic manner using Snack [13]. Signals were down sampled to 6 kHz since the first 3 SGRs are expected to lie below 3 kHz, and the formant tracker’s LPC order was set to 12. A 49 ms Hamming window spaced at 5 ms intervals was used. In general, the above parameters resulted in the best alignment of the formant contours with the spectrograms, although small changes had to be made in some cases. For each token, the resonance of the acceleration signal in the range of 1100-1700 Hz was recorded as the measured value. The correctness of the accelerometer measurements was ascertained by measuring Sg2 indirectly in 3 microphone signals of each of the diphthongs [ai] and [ei]. For each token, F2 was tracked semi-automatically using Snack. A window length between 1 and 3 pitch periods was chosen in order to clearly discern the Sg2-induced jump in F2. Figure 1(a) shows one such example. As shown in the figure, the average of the high and low F2 values constituting the jump was recorded as the measured value. In roughly 90% of the diphthongs analyzed, the jump in F2 was clearly observable, and the indirect and direct measurements agreed to within 40 Hz of each other. Finally, the mean of all the Sg2 measurements was recorded as the ground truth. Figure 1(b) shows the mean and standard deviation of Sg2 measurements for all training speakers. Standard deviations across vowels range between 25 Hz and 78 Hz and their corresponding Coefficients of Variation (COVs) (ratio of standard deviation to mean) range between 1.8% and 5.9%. Therefore, an estimate of Sg2 which lies within 5%-10% or within 100 Hz of the ground truth can be considered to be reasonably good.

Once the ground truths were obtained for all speakers in the training set, 5 measurements of F2 and F3 were made in the steady-state portion of each of the monophthongs (except [r]) recorded in Session 2. In all, 495 tokens were analyzed. The vowel [r] was not used because its third formant drops significantly below the nominal value. As with Sg2, F2 and F3 were obtained using Snack as described above, but the microphone signals were down sampled to 10 kHz for formant tracking. All ground truth Sg2 values and the formant measurements were converted to corresponding Bark values using Eq. (1). Then, 495 \(f_3Df_2 \) values and their corresponding \(f_2Ds_2 \) values were computed. Figure 2 shows a scatter plot of \(f_2Ds_2 \) versus \(f_3Df_2 \). Clearly, the two quantities have a high degree of correlation (\(\rho = \-0.9396 \)). Since F3 is always higher than F2, \(f_3Df_2 \) is always positive. However, \(f_2Ds_2 \) can be positive or negative depending on whether F2 is higher or lower than Sg2, respectively. As \(f_2Ds_2 \) increases, the degree of vowel backness increases, and when \(f_3Df_2 \) is around 4 Bark, \(f_2Ds_2 \) starts assuming negative values. This is reasonable because vowels with the feature [+back] have \(f_3Df_2 \) values higher than 3 Bark on average [11]. The figure also shows a linear fit (\(r^2 = 0.8758 \)) and a cubic polynomial fit (\(r^2 = 0.8908 \)) to the data. For the automatic estimation of Sg2, we decided to use the following equation describing the cubic polynomial since it forms a better fit to the data than the linear relation.

\[
f_2Ds_2 = -0.0004(f_3Df_2)^3 + 0.1075(f_3Df_2)^2 - 1.9540(f_3Df_2) + 6.1555 \quad (2)
\]
3.2. Automatic estimation of Sg2 from vowels

Ten tokens of each of the vowels (except [r]) recorded in Session 2 were excised from data belonging to 8 female speakers (25, 26, 27, 28, 35, 36, 37, 40) and 8 male speakers (22, 23, 29, 31, 38, 41, 43, 44) in Set 1. Given a particular vowel token, Sg2 was estimated using a frame-by-frame approach. F3 and F2 were tracked automatically (default settings without manual adjustments) using Snack and converted to Bark values using Eq. (1). For each frame i, a Sg2 estimate was obtained as follows. First, $f^2D_i^2$ was computed. Then, $f^2D_i^2$ was computed using Eq. (2). Finally, Sg2 (Bark) was calculated by subtracting $Sg2' \text{(Bark)}$ from $F2' \text{(Bark)}$. All Sg2 estimates were converted to Hz by inverting Eq. (1), and Sg2 for the given vowel token was evaluated by averaging all the frame-by-frame estimates. Data from the bilingual speakers were not used for this experiment.

3.3. Automatic estimation of Sg2 from continuous speech

Estimating Sg2 from continuous speech is important because one might not have access to excised vowels in real-world scenarios. For this experiment, up to 3 sentences of continuous speech were used for each speaker in the testing set. In addition to speakers mentioned in Section 3.2, data belonging to 2 female speakers (1, 6) and 2 male speakers (3, 4) in Set 2 were used. Every sentence, either in English or in Spanish, consisted of one of the carrier phrases mentioned in Section 2 with one of the CVb or HvD words embedded in it. The technique adopted to estimate Sg2 is as follows. First, F2 and F3 were extracted automatically frame-by-frame from the entire length of continuous speech presented. Then, all voiced frames were selected with the help of a parameter called Probability of Voicing (PV) returned by Snack. Snack sets PV to 1 for voiced frames and to 0 for unvoiced frames. A Sg2 estimate was computed for each voiced frame by following the procedure outlined in the Section 3.2. Finally, a Gaussian distribution was estimated from the pool of Sg2 values obtained for voiced frames, and its mean was recorded as the final Sg2 estimate. In case of bilingual speakers, two separate estimates were obtained for English and Spanish sentences.

Table 2. Results of Sg2 estimation from excised vowels. Results for males/females are shown above/below the double line. Columns 2 and 3 indicate the number of estimates within 10% of the ground truth, and the number of vowels for which average estimation error (averaged over all tokens of a given vowel) is less than 100 Hz, respectively. Corresponding vowel categories are shown in parentheses, where ‘f’, ‘m’ and ‘b’ denote front, mid, and back vowels and ‘d’ diphthongs, respectively.

<table>
<thead>
<tr>
<th>spkr</th>
<th>est. error < 10%</th>
<th>average est. error < 100 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(no. of tokens)</td>
<td>(no. of vowels)</td>
</tr>
<tr>
<td>22</td>
<td>69/130</td>
<td>7/13 (m, b)</td>
</tr>
<tr>
<td>23</td>
<td>108/130</td>
<td>10/13 (f, m, d)</td>
</tr>
<tr>
<td>29</td>
<td>112/130</td>
<td>11/13 (f, m, d)</td>
</tr>
<tr>
<td>31</td>
<td>120/130</td>
<td>13/13 (f, m, b, d)</td>
</tr>
<tr>
<td>38</td>
<td>74/130</td>
<td>6/13 (f, m)</td>
</tr>
<tr>
<td>41</td>
<td>111/130</td>
<td>11/13 (f, b, d)</td>
</tr>
<tr>
<td>43</td>
<td>85/130</td>
<td>9/13 (f, m, d)</td>
</tr>
<tr>
<td>44</td>
<td>126/130</td>
<td>13/13 (f, m, b, d)</td>
</tr>
<tr>
<td>25</td>
<td>127/130</td>
<td>11/13 (f, m, d)</td>
</tr>
<tr>
<td>26</td>
<td>112/130</td>
<td>10/13 (f, b, d)</td>
</tr>
<tr>
<td>27</td>
<td>94/130</td>
<td>10/13 (f, d)</td>
</tr>
<tr>
<td>28</td>
<td>113/130</td>
<td>13/13 (f, m, b, d)</td>
</tr>
<tr>
<td>35</td>
<td>116/130</td>
<td>12/13 (f, m, b, d)</td>
</tr>
<tr>
<td>36</td>
<td>98/130</td>
<td>9/13 (f, d)</td>
</tr>
<tr>
<td>37</td>
<td>118/130</td>
<td>10/13 (m, b, d)</td>
</tr>
<tr>
<td>40</td>
<td>111/130</td>
<td>10/13 (f, m, b)</td>
</tr>
</tbody>
</table>

4. RESULTS AND DISCUSSION

Figure 3(a) shows results of automatic estimation in excised vowels for a particular male speaker (41) in Set 1 who is representative of the test set. For this particular speaker, the algorithm yields smaller estimation errors for front vowels ([i], [I], [e]) and diphthongs ([e], [a], [ao], [au]) as compared to mid ([e], [a]) and back ([o], [o], [u]) vowels. Results of estimation from vowels for all native AE speakers in the test set are summarized in Table 2. Column 2 shows the number of estimates that lie within 10% of the ground truth. Column 3 shows the number of categories of vowels for which the average estimation error is less than 100 Hz. These vowels, according to our reasoning in Section 3.1, can be considered ‘good’ for automatic estimation. Clearly, these ‘good’ categories are speaker dependent. This is due to the fact that Eq. (2) captures the average characteristics of the set of training speakers, and hence might not represent all the test speakers equally well. Except for speakers 22 and 38, the number of ‘good’ vowels is at least 9. The algorithm’s poor performance for these two speakers was the result of erroneous tracking of F3, which was either because F3 was very weak even after pre-emphasis or because F4 was assumed to be F3 owing to its larger energy. After manual reconfiguration of the formant tracker for these two speakers, the average estimation error for diphthongs fell below 100 Hz, and consequently, the number of ‘good’ vowels increased to 9.

Fig. 3. Automatic estimation of Sg2 for speaker 41: (a) The upper panel shows Sg2 estimates from several tokens of each vowel. Empty and filled circles denote individual and average estimates, respectively. The lower panel shows average estimation errors. (b) Sg2 estimation from continuous speech. Each density function was estimated from frame-by-frame Sg2 estimates.
5. CONCLUSION

In this paper, algorithms were proposed to estimate Sg2 from adults’ speech. To the best of our knowledge, this is the first attempt at estimating Sg2 from continuous speech and from isolated vowels other than back-to-front diphthongs [9]. In order to make the algorithms independent of spoken content, a novel technique based on relating two acoustic measures of vowel backness was developed. An empirical relation was derived between two perceptually motivated quantities - the Bark difference between F3 and F2, and the Bark difference between F2 and Sg2 - and was used to automatically estimate Sg2 from isolated vowels and continuous speech. It was shown that, on average, the error in estimating Sg2 was less than 100 Hz in at least 9 isolated AE vowels, and less than 40 Hz in continuous speech consisting of English or Spanish sentences. In future, we plan to use the proposed algorithms, in conjunction with algorithms for the automatic estimation of Sg1, for speaker normalization in ASR systems. We also plan to extend our methods to children’s speech and compare them with existing algorithms.

6. ACKNOWLEDGMENTS

We are thankful to John R. Morton for recording and labeling the database, and to Dr. Mitchell S. Sommers for providing valuable suggestions. Thanks to Gary Leung and Juan Cortes for help with measurements. Work supported in part by the NSF.

7. REFERENCES