CLT FOR EIGEN-INFERENCE METHODS IN COGNITIVE RADIOS

Jianfeng Yao1,3, Romain Couillet2, Jamal Najim1, Eric Moulines1 and Mérouane Debbah2

1Telecom ParisTech, France, 2Centrale-Supélec-EDF Chair, France, 3ENS Paris, France.

\section*{ABSTRACT}
This article provides a central limit theorem for a consistent estimator of the population eigenvalues of a class of sample covariance matrices. An exact expression as well as an empirical and asymptotically accurate approximation of the limiting variance is also derived. These results are applied in a cognitive radio context featuring an orthogonal-CDMA primary network and a secondary network whose objective is to maximise the coverage of secondary transmissions under low probability of interference with primary users.

\textbf{Index Terms}— CLT, G-estimation, cognitive radios.

\section{I. INTRODUCTION}
Problems of statistical inference based on M independent observations of an N-variate random variable y, with $E[y] = 0$ and $E[yy^\mathsf{H}] = \mathbf{R}$ have drawn the attention of researchers from many fields for years. If the entries of y are the monthly market evolutions of N retail products, then the largest eigenvalue and corresponding eigenvector of \mathbf{R} characterise the optimal portfolio for a trader [1]. If y is the sample of alleles of N genes extracted from a living being, then \mathbf{R} predicts gene coexistence [2]. In wireless communications, if y are signals transmitted through a multi-dimensional channel, then the eigenvalues of \mathbf{R} are a sufficient statistic for the capacity of this channel [3]. In the context of cognitive radios, if y is a vector of data observed by a secondary network and arising from signals transmitted by K primary users with respective transmit powers P_1, \ldots, P_K, then the eigenvalues of \mathbf{R} contain information about those P_k, e.g. [11]. The present work focuses on this example.

Retrieving spectral properties of the population covariance matrix \mathbf{R}, based on the observation of M samples $y^{(1)}, \ldots, y^{(M)}$, is therefore paramount to many questions of general science. If M is large compared to N, then it is known that $\|\mathbf{R}_M - \mathbf{R}\| \to 0$, as $M \to \infty$, for any matrix norm, where \mathbf{R}_M is the sample covariance matrix $\mathbf{R}_M \triangleq \frac{1}{M} \sum_{m=1}^M y^{(m)}y^{(m)\mathsf{H}}$. However, one cannot always afford a large number of samples (this requires long delays in finance and wireless communications or too many individuals to sample in biology). In order to cope with this issue, random matrix theory [4] has proposed new tools, mainly spurred by the G-estimators of Girko [5]. Other works include convex optimisation methods [6], [7] and free probability tools [8], [9]. Many of those estimators are consistent in the sense that they are asymptotically unbiased as M, N grow large at the same rate. Nonetheless, it is only recently that new techniques have been unearthed which allow to estimate individual eigenvalues and functionals of eigenvectors of \mathbf{R}. The main contributor is Mestre [10] who provided an estimator for every eigenvalue of \mathbf{R} under some separability condition, followed by Couillet et al. [11] and Vallet et al. [12] for more elaborate models.

These estimators, although proven asymptotically unbiased, have nonetheless not been fully characterised in terms of higher order statistics. It is in particular fundamental to evaluate the variance of these estimators for not-too-large M, N. In the context of cognitive radios, evaluating the transmit powers and statistical information about the resulting estimates of primary users allows a secondary network to characterise the optimal coverage that ensures both a low probability of interference towards the primary network and high communication rates for the secondary users.

The rest of the article is structured as follows: in Section II, we introduce the system model and recollect the main required results of random matrix theory. In Section III, we derive the main result of this paper. In Section IV, this result is applied in the context of cognitive radios while a comparative Monte Carlo simulation is performed. Section V concludes this article.

\section{II. SYSTEM MODEL}
Consider a primary orthogonal uplink CDMA network composed of K transmitters. Transmitter k uses the n_k orthogonal N-chip codes $\mathbf{w}_{k,1}, \ldots, \mathbf{w}_{k,n_k} \in \mathbb{C}^N$. Consider also a secondary sensor that we assume time-synchronised with the primary network. From the sensor viewpoint, primary user k has power P_k. Then, at symbol time m, the sensor receives the N-dimensional data vector

$$y^{(m)} = \sum_{k=1}^K \sqrt{P_k} \mathbf{w}_{k,j} x_{k,j}^{(m)} + \sigma \mathbf{n}^{(m)}$$

with $\sigma \mathbf{n}^{(m)} \in \mathbb{C}^N$ the additive white Gaussian noise received at time m and $x_{k,j}^{(m)}$ the signal transmitted by user k on the carrier code j at time m, which we assume Gaussian as well. We assume that the sensor knows perfectly σ^2 and the number of users, and desires to estimate the transmit powers of each user. The sensor may or may not be aware of the number of codewords employed by each user.

Equation (1) can be compacted under the form

$$y^{(m)} = \mathbf{W} \mathbf{P}^{\frac{1}{2}} \mathbf{x}^{(m)} + \mathbf{n}^{(m)}$$

with $\mathbf{W} = [\mathbf{w}_{1,1}, \ldots, \mathbf{w}_{1,n_1}, \mathbf{w}_{2,1}, \ldots, \mathbf{w}_{K,n_K}] \in \mathbb{C}^{N \times n}$, $\mathbf{n} \triangleq \frac{1}{n} \sum_{k=1}^K n_k \mathbf{P} \in \mathbb{C}^{n \times \frac{1}{n}}$ the diagonal matrix with entry P_1 of multiplicity n_1, P_2 of multiplicity n_2, etc. and \mathbf{P}_K of multiplicity n_K, and $\mathbf{x}^{(m)} = [x_{1,1}^{(m)}, \ldots, x_{K,n_K}^{(m)}]_1 \in \mathbb{C}^n$ where $x_{k,j}^{(m)} \in \mathbb{C}^{n_k}$ is a column vector with j-th entry $x_{k,j}^{(m)}$.

Gathering M successive independent observations, we obtain the matrix

$$\mathbf{Y} = [y^{(1)}, \ldots, y^{(M)}] \in \mathbb{C}^{N \times M}$$

given by

$$\mathbf{Y} = \mathbf{W} \mathbf{P}^{\frac{1}{2}} \mathbf{X} + \mathbf{\sigma} \mathbf{N} = \begin{bmatrix} \mathbf{W} \mathbf{P}^{\frac{1}{2}} & \mathbf{\sigma} \mathbf{I}_N \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{N} \end{bmatrix}$$
where $X = [x^{(1)}, \ldots, x^{(M)}]$ and $N = [n^{(1)}, \ldots, n^{(M)}]$. The $y^{(m)}$ are therefore independent Gaussian vectors of zero mean and covariance $R \triangleq WPW^H + \sigma^2 I_N$. Since the question is to retrieve the powers P_k, while σ^2 is known, the problem boils down to finding the eigenvalues of $WPW^H + \sigma^2 I_N$. However, the sensor only has access to Y, or equivalently to the sample covariance matrix

$$R_M \triangleq \frac{1}{M} Y Y^H = \frac{1}{M} \sum_{m=1}^{M} y^{(m)} y^{(m)H}. \tag{1}$$

The problem of retrieving the eigenvalues of R based on R_M was tackled by Mestre in [10], who proved the following:

Proposition 1 ([10]): Let $R_M = \frac{1}{M} T_M^T X_M X_M^T T_M$ where the eigenvalue distribution function F_{T_M} of $T_M \in \mathbb{C}^{N \times N}$ converges to the distribution function T, composed of L masses in $t_1 < \ldots < t_L$ with weights $N_1/N, \ldots, N_L/N$, respectively, and $X_M \in \mathbb{C}^{N \times M}$ has independent $\mathcal{CN}(0,1)$ entries X_{ij}. Denote $\lambda_1 \leq \ldots \leq \lambda_N$ the eigenvalues of R_M and $\lambda = (\lambda_1, \ldots, \lambda_N)^T$. We further assume that $F_{T_M} = T$ and $N/M = c$, $N_i/M = c_i$ for all large M considered. Then, as $M, N \to \infty$, if the limiting support S of the eigenvalue distribution of R_M is formed of L compact disjoint subsets, we have

$$i_k - t_k \to 0$$

almost surely, where

$$i_k = \frac{N}{N_k} \sum_{m \in N_k} (\lambda_m - \mu_m) \tag{2}$$

with $N_k = \{\sum_{j=1}^{k-1} N_j + 1, \ldots, \sum_{j=1}^{k} N_j\}$ and $\mu_1 \leq \ldots \leq \mu_N$ are the ordered eigenvalues of $\text{diag}(\lambda) - \frac{1}{M} \sqrt{X} \sqrt{X}^T$.

Figure 1 depicts the eigenvalues of R_M and the associated limiting distribution as N, M grow large, for $t_1 = 1$, $t_2 = 3$, $t_3 = 10$ of equal multiplicity. Notice that we are here in a scenario where the limiting eigenvalue distribution of R_M is formed of L compact disjoint subsets as required by Proposition 1. In the present scenario, extending $[WP^2 \sigma I_N]$ into a $(N + n) \times (N + n)$ matrix filled with zeros, T_M is the matrix $WPW^H + \sigma^2 I_N$, with $t_k = P_k + \sigma^2$ of multiplicity $N_k = n_k$ for each k, possibly an eigenvalue equal to σ^2 of multiplicity $N_L = n$. The objective of the article is to study the performance of the estimator of Proposition 1 and apply it to the model (1).

We will precisely show that, as $N, M \to \infty$, the random vector $(M(i_k - t_k))_{1 \leq k \leq K}$ is asymptotically distributed as $N(0, \Theta)$, where Θ will be characterised exactly and will be given an approximation $\hat{\Theta}$ based on the observation of Y, such that, as $N, M \to \infty$, $\Theta_{ij} - \Theta_{ij} \xrightarrow{a.s.} 0$.

III. CENTRAL LIMIT THEOREM

III-A. Further discussion on Proposition 1

The work of Mestre relies on tools of random matrix theory, among which the Stieltjes transform of distribution functions. The Stieltjes transform $m_Z(z)$ of the distribution function F_Z of the eigenvalues of a nonnegative Hermitian matrix $Z \in \mathbb{C}^{N \times N}$, with eigenvalues $\lambda_1, \ldots, \lambda_N$, is defined for $z \in \mathbb{C} \setminus \mathbb{R}^+$ as

$$m_Z(z) \triangleq \int \frac{1}{\lambda - z} dF_Z(\lambda) = \frac{1}{N} \sum_{i=1}^{N} (1 - 1/\lambda_i - z). \tag{3}$$

The proof of Proposition 1 is based on the work of Silverstein and Bai [13] who prove that the Stieltjes transform $m_{R_M}(z)$ of the sample covariance matrix R_M converges almost surely to a function $m(z)$ as $M, N \to \infty$ with $N/M \to c, 0 < c < \infty$, where, for $z \in \mathbb{C}^+$, $m(z)$ is defined as the unique solution in \mathbb{C}^+ of [13]

$$m(z) = cm(z) + (c - 1) \frac{1}{z}$$

$$m(z) = -\left(z - c \int \frac{t}{1 + tm(z)} dT(t)\right)^{-1},$$

with T the limiting distribution function of T_M. Moreover, $m(z)$ and $m(z)$ are the Stieltjes transform of distribution functions F and F, respectively.

When dT is composed of L masses in t_1, \ldots, t_L, based on the link between $m(z)$ and T and under the condition that S is formed of L compact disjoint subsets, Mestre writes \hat{t}_k explicitly as the following complex integral of $m(z)$ [4, Chapter 6]

$$\hat{t}_k = \frac{1}{2\pi i \epsilon_k} \oint_{\mathbb{C}_k} \frac{m(z)}{z} dz$$

with \mathbb{C}_k a negatively oriented contour that circles around the k-th cluster in S only. Denote now $R_M \triangleq X_M^T T_M X_M$. Defining

$$\hat{t}_k \triangleq \frac{N}{2\pi i N_k \epsilon_k} \oint_{\mathbb{C}_k} \frac{m(R_M)}{z} dz \tag{4}$$

with $m_{R_M}(z) = \frac{N}{2\pi i} m_{R_M}(z) + \frac{N - M - 1}{2} \Sigma_{t \neq t_k} \Theta_{ij}$ the Stieltjes transform of R_M, dominated convergence arguments ensure that $\epsilon_k \to \hat{t}_k \xrightarrow{a.s.} 0$. The integral form of \hat{t}_k can then be explicitely computed thanks to residue calculus [14] and we obtain (2).

III-B. Main results

In [15], Bai and Silverstein extend the limiting result on F_{R_M} to a central limit theorem, when X_M has entries with fourth order moment $E[[X_{ij}]^4] = 2$, which is the case for complex Gaussian X_{ij}.
\[
\Theta_{ij} \triangleq -\frac{1}{4\pi^2 c_i c_j} \oint_{C_i} \oint_{C_j} \left(\frac{m'(z_1)m'(z_2)}{(m(z_1) - m(z_2))^2} - \frac{1}{(z_1 - z_2)^2} \right) \frac{1}{m(z_1)m(z_2)} dz_1 dz_2
\]

\[
\hat{\Theta}_{ij} \triangleq \frac{M^2 N_i N_j}{\hat{N}_i \hat{N}_j} \sum_{(a,b) \in N_i \times N_j, a \neq b} -\frac{(\mu_a - \mu_b)^2 m''_{R_{M_a}}(\mu_a)m''_{R_{M_b}}(\mu_b)}{6m''_{R_{M_a}}(\mu_a)^3} + \delta_{ij} \sum_{a \in N_i} \frac{m''_{R_{M_a}}(\mu_a)}{4m''_{R_{M_a}}(\mu_a)^3} \]

(3)

\[
\text{We provide hereafter a sketch of proof of the above results.}
\]

\textbf{Proposition 2 ([15]):} Under these conditions, for \(f_1, \ldots, f_p \) analytic on \(\mathbb{R} \),

\[
\left(N \int f_i(x) d(F^{R,M} - F)(x) \right)_{1 \leq i \leq p} \Rightarrow X \sim N(0, V),
\]

\[
V_{ij} = \frac{1}{4\pi^2} \oint \oint f_i(z_1) f_j(z_2) v_{ij}(z_1, z_2) dz_1 dz_2,
\]

\[
v_{ij}(z_1, z_2) = \frac{m'(z_1)m'(z_2)}{(m(z_1) - m(z_2))^2} - \frac{1}{(z_1 - z_2)^2}
\]

(6)

where the integration is over positively oriented contours that circle around \(\mathbb{S} \).

Similar to Mestre who transposed the first order limit of \(F^{R,M} \) into a limiting result on the estimator \(\hat{t}_k \) of \(t_k \), the present article transposes the second order limit of functionals of \(R_M \) into a central limit of the variations of \(\hat{t}_k \) around \(t_k \).

To this end, the fundamental tool we use here is the \textit{delta-method} [16].

\textbf{Lemma 1:} Let \(X_1, X_2, \ldots \in \mathbb{R}^n \) be a random sequence such that

\[
a_n(X_n - \mu) \Rightarrow X \sim N(0, V)
\]

for some \(a_n \to \infty \). Then for \(f : \mathbb{R}^n \to \mathbb{R}^N \), differentiable at \(\mu \),

\[
a_n(f(X_n) - f(\mu)) \Rightarrow f(X) - f(\mu)
\]

with \(J(f) \) the Jacobian matrix of \(f \).

The basic idea is the following: since (i) \(\hat{t}_k \) is a function of \(m_{R_{M_k}}(z) \), itself being a functional of \(F^{R,M} \), and (ii) the limiting variations of well-behaved functionals of \(F^{R,M} \) are Gaussian, we can apply (with some technical care) the delta-method to \(\hat{t}_k \).

The outcome of the above are the two theorems

\textbf{Theorem 1:} Let \(R_M \) be defined as in Proposition 1 with \(E[X_{ij}^4] \geq 2 \). Then,

\[
(M(\hat{t}_k - t_k))_{1 \leq k \leq K} \Rightarrow X \sim N(0, \Theta)
\]

with \(\Theta_{ij} \), the entry \((i, j)\) of \(\Theta \), given by (3), where the contour \(\mathcal{C}_{k} \) encloses the \(k \)-th cluster of \(\mathbb{S} \) only.

Similar to Proposition 1, it is possible to provide a consistent estimate \(\hat{\Theta}_{ij} \) for \(\Theta_{ij} \), \(1 \leq i, j \leq K \). This is given as follows:

\textbf{Theorem 2:} Let \(\Theta_{ij} \) be defined as in Theorem 1. Then,

\[
\hat{\Theta}_{ij} - \Theta_{ij} \xrightarrow{a.s.} 0
\]

as \(N, M \to \infty \), where \(\hat{\Theta}_{ij} \) is defined in (4), with the quantities \(N_k \) and \(\mu_1, \ldots, \mu_N \) defined as in Proposition 1.

Theorem 1 describes the limiting performance of the estimator of Proposition 1 with an exact characterisation of its variance, while Theorem 2 introduces an estimator of this variance based on the observation of the random \(R_M \). Theorem 2 is useful in practice in that one can obtain simultaneously an estimate \(\hat{t}_k \) of the values of \(t_k \) as well as an estimation of the degree of confidence for each \(\hat{t}_k \).
IV. PERFORMANCE OF COGNITIVE RADIOS

We consider the system model (1). Assuming the spectrum of R_M allows one to clearly distinguish the successive clusters (as in Figure 1), Proposition 1 enables the detection of primary transmitters and the estimation of their transmit powers P_1,\ldots, P_K; this boils down to estimating the largest K eigenvalues of $WPW^H + \sigma^2 I_N$, i.e. the $\hat{P}_k + \sigma^2$, and to subtract σ^2 (optionally estimated from the smallest eigenvalue of $WPW^H + \sigma^2 I_N$ if $n < N$). Call \hat{P}_k the estimate of P_k.

Based on these power estimates, the sensor can determine the optimal coverage for secondary communications that ensures no interference to the primary network. A basic idea for instance is to ensure that the closest primary user, i.e. that with strongest received power, is not interfered. Our interest is then cast on \hat{P}_k.

Now, since the power estimator is imperfect, it is hazardous for the secondary network to state that K has power \hat{P}_k or to add some empirical security margin to \hat{P}_k. The results of Section III partially answer this problem.

Theorems 1 and 2 enable the secondary sensor to evaluate the accuracy of \hat{P}_k. In particular, assume that the cognitive radio protocol allows the secondary network to interfere the primary network with probability q and denote A the value

\[A \triangleq \inf_q \{ \Pr(\hat{P}_k - P_k > a) \leq q \}. \]

According to Theorem 1, for N,M large, A is well approximated by $\Theta_{K,K}Q^{-1}(q)$, with Q the Gaussian Q-function. If the sensor detects a user with power P_K, estimated by \hat{P}_K, $\Pr(\hat{P}_K + A < P_K) < q$ and then it is safe for the secondary network to assume the worst case scenario where user K transmits at power $\hat{P}_K + A \simeq \hat{P}_K + \Theta_{K,K}Q^{-1}(q)$.

In Figure 2, the performance of Theorem 1 is compared against 10,000 Monte Carlo simulations of a scenario with three users, with $n_1 = n_2 = n_3 = 20$, $N = 60$ and $M = 600$. It appears that the limiting distribution is very accurate for these values of N,M. We also performed simulations to obtain empirical estimates $\hat{\Theta}_{k,k}$ of $\Theta_{K,K}$ from Theorem 2, which suggest that $\hat{\Theta}_{k,k}$ is an accurate estimator as well.

V. CONCLUSION

In this paper, we derived an exact expression and an approximation of the limiting performance of a statistical inference method that estimates the population eigenvalues of a class of sample covariance matrices. These results are applied in the context of cognitive radios to optimize secondary network coverage based on measures of the primary network activity.

VI. REFERENCES