ADAPTIVE ANISOTROPIC REGULARIZATION OF DEFORMATION FIELDS FOR NON-RIGID REGISTRATION USING THE MORPHON FRAMEWORK

Daniel Forsberg1,2,3, Mats Andersson1,2, Hans Knutsson1,2

1Department of Biomedical Engineering, Linköping University, Sweden
2Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden
3Sectra Imteca, Linköping, Sweden

ABSTRACT

Image registration is a crucial task in many applications and applied in a variety of different areas. In addition to the primary task of image alignment, the deformation field is valuable when studying structural/volumetric changes in the brain. In most applications a regularizing term is added to achieve a smoothly varying deformation field. This can sometimes cause conflicts in situations of local complex deformations. In this paper we present a new regularizer, which aims at handling local complex deformations while maintaining an overall smooth deformation field. It is based on an adaptive anisotropic regularizer and its usefulness is demonstrated by two examples, one synthetic and one with real MRI data from a pre- and post-op situation with normal pressure hydrocephalus.

Index Terms— Image registration, Non-rigid registration, Adaptive regularization, Tensor-based morphometry

1. INTRODUCTION

Image registration is a well known problem which aims at finding a deformation field \mathbf{d} that geometrically transforms one image (source image I_S) to fit another image (target image I_T), i.e. $I_T(x) = I_S(x + \mathbf{d}(x))$.

Image registration algorithms can be divided into two groups, rigid and non-rigid (elastic), based upon their ability to handle different types of deformations. In this paper we focus on non-rigid registration. Some well known concepts within non-rigid image registration include thin plate splines \cite{1}, viscous fluid flow \cite{2}, diffusion models (demons) \cite{3}, b-splines and free form deformations \cite{4}. In this paper we will work with a registration and segmentation algorithm known as the Morphon, first presented in \cite{5}.

Image registration is frequently used within medical imaging of the brain. A specific application is when studying structural changes in the brain caused by neurodegenerative diseases or traumas. The obtained deformation field \mathbf{d} can be used to estimate the local volume change by calculating the Jacobian determinant J_D of the deformation field \cite{6}. This is known as tensor-based morphometry (TBM).

In order to have reliable results from TBM it is necessary to obtain plausible deformation fields as outputs from the registration process. It is not sufficient just to have a successful registration (defined as visually pleasing and/or a good similarity measure), i.e. a smoother deformation field is considered more plausible than an irregular, if both achieve a similar registration. Normally the registration process has some sort of spatially invariant isotropic regularizing term attached to it. The regularizer is constructed to achieve a smoothly varying deformation field, e.g. to prevent tearing or folding of the image (can also be used to control the registration process by describing the characteristics of the material in the images, e.g. its elasticity). However, this approach can cause trouble when local complex deformations are present, which is typical for registration of brain images. The problem is often handled by allowing more degrees of freedom with the result of a visually pleasing registration but a more irregular deformation field. An irregular deformation field can on the other hand be handled by allowing less degrees of freedom with the result of a smoother deformation field but an inferior registration.

The aim of this paper is to present an adaptive anisotropic regularizer which utilizes structural information for handling local complex deformations while maintaining an overall smooth deformation field for the Morphon framework.

2. METHOD

2.1. The Morphon

The Morphon is essentially an algorithm where a source image $I_S(x)$ is iteratively deformed $I_D(x) = I_S(x + \mathbf{d}(x))$ until it fits a target image $I_T(x) = I_D(x)$. This process is performed over multiple scales starting on coarse scales to register large global displacements and moving on to finer scales to register smaller local deformations. The algorithm itself consists of the following three steps: local displacement estimation, deformation field accumulation, deformation.

The local displacement estimation is based upon a quadrature phase difference estimation. This is done by filtering the...
deformed source image and the target image with a set of quadrature filters, \(f_k \) with \(N \) different directions \(\hat{n}_k \), where
\[
I_D(x) = I_S(x) \quad \text{in the first iteration. The filter responses in}
\]
the \(N \) different directions \(q_{D_k} = I_D * f_k, q_{T_k} = I_S * f_k \)
describe how edge- or line-like the local neighbourhood is
coupled with a certainty measure (determined by the phase
respectively the magnitude of the filter responses). The outputs
are used to compute the local phase difference between
the deformed source image and the target image based upon
the conjugate products \((Q_k = q_{D_k}^* q_{T_k}^*) \) of the filter responses.
\[
d_k = \arg(Q_k) \\
c_k = |Q_k|^{1/2} \cos\left(\frac{\arg(Q_k)}{2}\right)
\]
The phase differences \(d_k \) and the coupled certainties \(c_k \) are
then used to compute an incremental displacement field \(d_1 \)
and certainty \(c_1 \). This is done by finding the solution to the least
square problem defined as: \[
\min \sum_{k=1}^{N} (c_k T_D (d_k \hat{n}_k - d))^2,
\]
where \(d \) is the estimated incremental displacement, \(T_D = \sum_k |q_{S_k}| M_k \) is the local structure tensor of \(I_D \) and \(M_k \) is a
projection tensor associated with \(\hat{n}_k \). Solving the least square
problem is reduced to solving a linear equation system.
\[
Ad = b \quad \Leftrightarrow \quad d = A^{-1} b
\]
Since this equation system is solved for every point in the
image, the elements of \(A \) and \(b \) are averaged with an isotropic
Gaussian kernel in order to improve its robustness.

The incremental displacement field and certainty are then
added to the accumulated deformation field \(d_a \) and certainty
\(c_a \) according to: \(d_a = c_a d_a + c_0 (d_a + d_l) \) and \(c_a = \frac{c^2_a + c^2_0}{c_a + c_0} \).

The last step of an iteration is to use the accumulated
deformation field to deform the source image, \(I_D(x) = I_S(x + d_a (x)) \).

2.2. Adaptive anisotropic regularization of the deformation field

Previously it has been suggested to obtain a smoothly varying
deformation field by regularizing the accumulated deformation
field in each iteration [5]. The regularization is performed
by normalized averaging using a Gaussian low pass kernel \(g \)
as filter and \(c_a \) as certainty, according to:
\[
d_a = \frac{(c_a d_a) + (c_0 g)}{c_a + c_0}
\]
A novel approach for handling local complex deformations is to
include an adaptive anisotropic regularizing step
in the estimation of the incremental displacement field. The
principle behind this suggestion is based upon an idea for
adaptive filtering presented in [7].

The idea is to apply an adaptive anisotropic Gaussian kernel
instead of a spatially invariant isotropic Gaussian kernel to
regularize the elements of the equation system in equation
3. The elements are regularized with a large isotropic kernel
\(g_{\text{large}} \) if no significant signal is present (case 1). If a single
anisotropic structure is present then the elements are regular-
ized with an elliptic kernel \(g_{\text{aniso}} \) along the structure (case 2)
or they are regularized with a small isotropic kernel \(g_{\text{small}} \)
if a structure with multiple orientations is present (case 3).

The adaptive regularization is guided by a control tensor
\(C \). The control tensor \(C \) is defined as:
\[
C = \sum_{k=1}^{N} \gamma_k \hat{e}_k \hat{e}^T_k
\]
\[
\gamma_1 = m(||T_{lp}||, \sigma, \alpha, \beta)
\]
\[
\gamma_k = \gamma_1 \prod_{l=2}^{k} \mu \left(\frac{\lambda_l}{\lambda_{l-1}}, \alpha_l, \beta_l \right) \quad k = 2 \ldots N
\]
where \(\hat{e}_k \) and \(\lambda_k \) are the eigenvectors and the eigen-
values \(\gamma_k \) is straightforward. The eigenvectors are orthog-
onal and describe the dominant orientations of the local neigh-
bourhood. The eigenvalues describe the relationship between
the dominant orientations. For the 2D case \(\gamma_1 \approx \gamma_2 \approx 0 \)
corresponds to case 1, \(\gamma_1 \approx 1 \) and \(\gamma_2 \approx 0 \) to case 2
and \(\gamma_1 \approx \gamma_2 \approx 1 \) to case 3. Note that \(||C|| = 0 \) equals case 1 with
no significant signal and \(\gamma_1 \approx \gamma_2 \approx 0 \). In the 2D case
the different kernels are then added according to:
\[
g_{\text{adapt}} = ||C|| \left(1 - \frac{\gamma_2}{\gamma_1} \right) * g_{\text{aniso}} + \frac{\gamma_2}{\gamma_1} * g_{\text{small}} + (1 - ||C||) * g_{\text{large}}
\]

3. RESULTS

To demonstrate the usefulness of the adaptive anisotropic reg-
ularizer two different examples have been tested, one simple
synthetic and one using real MRI data. The adaptive regular-
izer \(g_{\text{adapt}} \) was compared with using either only \(g_{\text{small}} \) or
\(g_{\text{large}} \) as regularizing kernel. The regularizing filters \(g_{\text{aniso}}
\), \(g_{\text{small}} \) and \(g_{\text{large}} \) had a kernel size of \(35 \times 35 \) in the spatial
domain. The two isotropic filters \(g_{\text{small}} \) and \(g_{\text{large}} \) had a \(\sigma \) of
3 respectively 15. The anisotropic filter \(g_{\text{aniso}} \) used \(\sigma = 15 \)
along the major axis and \(\sigma = 3 \) along the minor axis. For ex-
ample 1 we used 16 anisotropic filters uniformly distributed
along a half circle whereas 30 filters were used in example 2.

Fig. 1. Left: \(g_{\text{large}} \), Middle: \(g_{\text{small}} \) and Right: \(g_{\text{aniso}} \).
In example 1 (top row in figure 2), two lines have been translated towards each other, one to the right and one down to the left. Both the source and target image have an SNR set to 10dB. Example 2 (bottom row in figure 2) consists of two MR images displaying a pre- and post-op situation for normal pressure hydrocephalus where a shunt has been inserted to regulate the volume of the cerebral spinal fluid.

The deformed source images I_D and the difference images $I_D - I_T$ are displayed in figures 3 and 5. Figures 4 and 6 display the logarithm of the Jacobian determinant, $\log(J_D)$. The colour-coding of the logarithm of the Jacobian determinant has the following interpretation: green equals expansion, red equals contraction and purple equals folding.

The similarity between the deformed source image and the target image has been measured using normalized cross-correlation (NCC) and mutual information (MI). In the first example this has been estimated without the added noise. The overall smoothness of the deformation field has been measured using the gradient root mean square (G-RMS),

$$\sqrt{\frac{1}{N} \sum_{k=1}^{N} \| \nabla d_k \|},$$

where N equals the number of pixels in one image.

Table 1. Similarity measures (NCC, MI) and average gradient deformation field (G-RMS) for example 1 and 2.

<table>
<thead>
<tr>
<th>Example</th>
<th>Regularizer</th>
<th>NCC</th>
<th>MI</th>
<th>G-RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td>g_{adap}</td>
<td>0.997</td>
<td>1.261</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>g_{small}</td>
<td>0.998</td>
<td>1.265</td>
<td>0.378</td>
</tr>
<tr>
<td></td>
<td>g_{large}</td>
<td>0.984</td>
<td>1.185</td>
<td>0.127</td>
</tr>
<tr>
<td>Brain</td>
<td>g_{adap}</td>
<td>0.964</td>
<td>1.486</td>
<td>0.184</td>
</tr>
<tr>
<td></td>
<td>g_{small}</td>
<td>0.967</td>
<td>1.518</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>g_{large}</td>
<td>0.943</td>
<td>1.401</td>
<td>0.119</td>
</tr>
</tbody>
</table>

4. DISCUSSION

In both of the examples the g_{small} kernel gives a result that visually appears to be more correct, see figures 3 and 5. Also the similarity measures suggest the g_{small} kernel to be favourable, see table 1. However, our objective was to create a smooth deformation field while still handling local complex deformations. The benefits of the adaptive anisotropic regularizer become evident when comparing the deformed grids (figures 3 and 5) and the Jacobian determinant of the deformation fields (figures 4 and 6). The sensitivity to noise for g_{small} in regions with no visible structures is apparent when observing the deformed grids, especially in figure 3 top middle. The smoothness of the deformation field is also confirmed by the G-RMS in table 1.

As predicted in section 1 a larger regularizing kernel, g_{large}, is not the remedy to the problems of a small regularizing kernel. The deformation field is much smoother but it fails to handle small local deformations. This can be seen both in figure 3 and 5 bottom right. In example 1 it fails to bring the two lines together but it also affects the surrounding regions. Similar results can be seen in example 2 where it fails to shrink the ventricles sufficiently.

Another positive aspect of g_{adap} when comparing it with g_{small} is evident in the deformation field of example 1 in figure 7. Here g_{adap} produces a displacement for the right line...
that is almost constant along the whole line (pointing down to the left). However, in the deformation field produced by g_{small} the points close to the end of the line have a correct displacement (pointing down to the left) but the points in the middle have lost some of their vertical displacement.

Earlier suggestions for dealing with the problem of local complex deformations while maintaining a smooth deformation field can be found in [8, 9]. However, even though both suggestions are based upon an adaptive regularizer controlled by a local tensor they both fall short of utilizing the anisotropy of the tensor.

The purpose of the adaptive anisotropic regularizer was to allow local complex transformations while maintaining a smoothly varying deformation field. The success of the regularizer is visible in both examples when comparing with an averaging kernel using only g_{small} or g_{large}. Also the result in table 1 supports this conclusion since the adaptive regularizer achieves a registration on a similar level as g_{small} while having a deformation field which is evidently smoother.

Future work includes improving the performance of the adaptive anisotropic regularizer. It also needs to be implemented in 3D. Another important future task is to apply the Morphon to a larger set of medical images containing structural changes and to evaluate the plausibility of the produced deformation fields with the help of medical professionals.

5. REFERENCES