MULTI-ANTENNA COGNITIVE RADIO SYSTEMS: ENVIRONMENTAL LEARNING AND CHANNEL TRAINING

Feifei Gao†, Rui Zhang†, Ying-Chang Liang†, and Xiaodong Wang‡

†Institute for Infocomm Research, Singapore
‡Columbia University, New York, USA
{ffgao, rzhang, ycliang}@i2r.a-star.edu.sg, wangx@ee.columbia.edu

ABSTRACT

This paper presents a multi-antenna cognitive radio (CR) system that is capable of operating concurrently with the primary radio (PR) link. The operation of the CR system consists of three stages: environmental learning, CR channel training and CR data transmission. In environmental learning stage, partial channel information between PR and CR are obtained blindly, based on which the transmit beamforming and the receive beamforming strategies are designed at CR to remove/reduce the interference to and from PR, respectively. We characterize all the interference values analytically and study the problem of learning/training tradeoff associated with the proposed scheme. The optimal balancing between learning and training is examined via the minimum mean square error (MSE) of the channel estimation. It is shown that for a given total learning/training time, there indeed exists an optimal learning time that minimizes the MSE of the channel estimation, yet the interference power to the PR is regulated.

Index Terms—Cognitive Radio, transmit beamforming, receive beamforming, learning, channel training.

1. INTRODUCTION

The original idea behind cognitive radio (CR) expects the CR user to detect the frequency bands that are not currently occupied by the primary radio (PR) and to start the opportunistic transmission on these empty bands, while the CR user must release the bands once PR user becomes active. As a consequence, spectrum sensing is recognized as the key technique and has attracted a lot of attentions [1]-[3].

With the introducing of multiple antennas at the CR transmitter (CR-Tx) [4], CR is allowed to transmit even if the PR link is active, provided that the resultant interference power or the so-called interference temperature at each PR terminal is kept below certain predefined threshold. Intuitively, with the aid of multiple antennas, CR-Tx could set a null along the direction from CR-Tx to PR, whereas a strong beam can be built along the direction from CR-Tx to CR receiver (CR-Rx).

In this work, we consider a more practical CR scenario, where both CR-Tx and CR-Rx are equipped with multiple antennas. This system is called multi-antenna CR system shown in Fig. 1, where there are M_1 antennas at CR-Tx and M_2 antennas at CR-Rx. Assume that both CR terminals stay within the boundary of M_p antennas of PR that operate in time division duplex (TDD) mode. For simplicity, we assume that these M_p antennas purely belong to one PR terminal, whose function switches between the transmitting, that occupies a factor α of the overall time, and the receiving that occupies a factor $(1-\alpha)$ of the overall time. However, we do not expect CRs to know in which period PR is devoted to transmitting or receiving.

Let us represent the channels from PR to CR-Tx and CR-Rx by the $M_1 \times M_p$ matrix G_1, and the $M_2 \times M_p$ matrix G_2, respectively. The channel from CR-Tx to CR-Rx is denoted by the $M_2 \times M_1$ matrix H. Since CRs operate in the same frequency at PR, the reverse channels from CR-Tx to PR is denoted G_1^T. Although more general scenario when CR-Tx and CR-Rx operate under the TDD mode can be considered, here, we will only present the main idea from the one way transmission. Furthermore, we require more antennas at CRs, i.e., $M_1 > M_p$ and $M_2 > M_p$ which is a reasonable cost for CRs to achieve the concurrent transmission with PR. It is assumed that PR are oblivious to the existence of the CR link.

The operation of the multi-antenna CR system consists of three stages: environmental learning, CR channel training and CR data transmission. In environmental learning stage, partial channel information between PR and CR are obtained blindly, based on which the transmit beamforming and the receive

1Discussions considering PR transceiver pairs can be found in [5].
beamforming strategies are designed at CR to remove/reduce

the interference to and from PR, respectively, for the period

of CR channel training and data transmission.

2. Initializing the System

Suppose CR is going to spend N symbol periods during the

initialization, which is divided into N_t symbol periods for

learning the channels from PR to CRs and $N_i = N - N_t$

symbol periods for training the channel from CR-Tx to CR-

Rx.

2.1. Environmental Learning

Considering that PR switches between transmitting and re-

ceiving, the signals sent from PR can be expressed as

$$s_p(n) = \begin{cases} \tilde{s}_p(n) & \text{if PR transmits} \\ 0 & \text{otherwise} \end{cases}, \quad n = 1, \ldots, N_t,$$

(1)

where \tilde{n} is another set of index and $\tilde{s}_p(n)$ are the independent and identically distributed (i.i.d.) random signals with covariance matrix $\sigma^2_{n_j}$. Assuming that the learning period is sufficiently long, which is reasonable in order to achieve the reliable learning, there is $R_p = E[s_p(n) s_p^H(n)] = \sigma^2_{n_j} I$.

The signals received at CR-Tx and CR-Rx are

$$y_j(n) = G_j s_p(n) + z_j(n), \quad n = 1, \ldots, N_t,$$

(2)

for $j = 1, 2$, where $z_j(n)$ represents the complex i.i.d. Gaussian noise, each entry having the variance $\sigma^2_{n_j}$. The covariance matrices of the received signals are

$$R_j = E[y_j(n) y_j^H(n)] = \alpha \sigma^2_{n_j} G_j G_j^H + \sigma^2_{n_j} I.$$

(3)

The eigen-decomposition (EVD) of R_j can be expressed as

$$R_j = V_j \Lambda_j V_j^H + \sigma^2_{n_j} U_j U_j^H,$$

(4)

where V_j is the $M_j \times M_p$ matrix that spans the same space as G_j, while U_j is the $M_j \times (M_j - M_p)$ matrix that spans the orthogonal space of G_j. Correspondingly, Λ_j is the diagonal matrix that contains largest M_p eigenvalues of R_j.

If no additional training symbols are sent from PR to CRs, one can only obtain the subspace information of G_j. Nonetheless, knowing V_j and U_j is sufficient to help design the CR systems. If we restrict CR-Tx to transmit only through the space spanned by U_j^T and CR-Rx to receive only through the space spanned by U_j, then the interference to and from PR can be completely removed during CR transmission since $U_j^H G_j = 0$. This scheme is called cognitive beamforming.

Practically, however, CRs can only obtain a limited samples of the received signals. Then, the sample covariance matrix is constructed as

$$\hat{R}_j = \sum_{n=1}^{N_t} y_j(n) y_j^H(n).$$

(5)

By applying EVD to \hat{R}_j, we obtain the noisy version of the matrices U_j as \hat{U}_j. From [6], the first order perturbation in the estimated U_j is approximated by

$$\Delta U_j = \hat{U}_j - U_j \approx -(Q_j)^\dagger \Delta R U_j,$$

(6)

where \dagger denotes the pseudo-inverse and $\Delta R_j = \hat{R}_j - R_j$.

2.2. CR Data Transmission

Before proceeding to the CR channel training, we need first recognize the channels that are needed at CR-Rx. To protect PR, the information symbols $d(n)$ sent from CR-Tx will be precoded by the matrix U_1, named as cognitive transmit beamforming. The received signal at CR-Rx is then

$$y(n) = \hat{H} U_1 d(n) + G_2 s_p(n) + z_2(n).$$

(7)

The second term on the right hand side (RHS) denotes the interference from PR to CR, which was not handled in the existing literatures [4]. In this sense, we propose the concept of cognitive receive beamforming, i.e., CR-Rx will process the received signals by pre-multiplication with U_2^H. The received signal then becomes

$$\hat{y}(n) = F d(n) + \Delta U_2^H G_2 s_p(n) + \hat{z}_2(n),$$

(8)

where $F = \hat{U}_2^H H U_1$ and $\hat{z}_2(n) = \hat{U}_2^H z_2(n)$. The residue interference $\Delta U_2^H G_2 s_p(n)$ goes to zero if the estimated U_2 becomes perfect. Another advantage of applying both transmit and receive beamforming appears when CRs operate under TDD mode, where one can easily verify that the reverse channel from CR-Rx to CR-Tx becomes F^T, which maintains the reciprocity of the TDD transmission and will lessen the burden of feeding back channels from both direction.

Therefore, the task of channel estimation should focus on estimating F considering both the residue interference and the equivalent noise.

2.3. CR Channel Estimation

Suppose the training sequence from CR-Tx contains $t(n)$, $n = N_t + 1, \ldots, N_t + N_i$, which also must be precoded by U_1 in order to reduce the interference to PR.

Denote

$$\tilde{Y} = [\tilde{y}(N_t + 1), \tilde{y}(N_t + 2), \ldots, \tilde{y}(N_t + N_i)]$$

$$T = [t(N_t + 1), t(N_t + 2), \ldots, t(N_t + N_i)]$$

$$S_p = [s_p(N_t + 1), s_p(N_t + 2), \ldots, s_p(N_t + N_i)]$$

$$Z_2 = [z_2(N_t + 1), z_2(N_t + 2), \ldots, z_2(N_t + N_i)].$$

In this work we do not assume any channel statistics at CR-Tx during the system initialization, so the least square (LS) channel estimation of F is

$$\hat{F} = \hat{Y} T^\dagger = F + (\Delta U_2^H G_2 S_p + \hat{Z}_2) T^\dagger.$$

(9)
It can be calculated that
\[E[S^H_p G^H_2 \Delta U_2 \Delta U^H_2 G_2 S_p] \]
\[\left(\frac{(a)}{N_l} \right) = \frac{(a)}{N_l} \sigma^2_{n_2}(M_2 - M_p) \]
\[\times \left(tr(G^H_2 Q_1^H G_2) + \sigma^2_{n_2} tr(G^H_2 Q_2^H G_2) \right) \]
\[= \frac{(M_2 - M_p) + 2 \beta_2}{N_l}. \]

where “(a)” is derived by using the property \[\{6\} \]

for any matrix A, and \(\beta_2 \) is defined as \(M_p + \sigma^2_{n_2} tr(Q_1^H) \). Although the exact value of \(Q_2 \) is not known to CR-Rx, which brings some trouble when identifying the system parameters, we may replace \(Q_2 \) by its maximum likelihood (ML) estimate \(Q_2 \) that can be obtained according to the algorithms in \[\{5\} \].

Following the standard approach \[\{7\} \], the channel estimation targets to minimize the mean square error (MSE):
\[J = E[tr((\hat{F} - F)^H (\hat{F} - F))] \]
\[= (M_2 - M_p) \sigma^2_{n_2} \left(\frac{(a)}{N_l} + 1 \right) tr(\hat{F}^H \hat{F})^{-1}. \]

Therefore, \(\beta_2 \) is the only scalar that needs to be informed to CR-Tx, which can be achieved via a very lower rate feedback channel.

Due to the non-perfect environmental learning, the residue interference \(G^H_1 \Delta U_1^H t(n) \) is non-zero at PR. The interference at PR is normally characterized by the interference temperature defined as:
\[I(n) = E[\|G^H_1 \Delta U_1^H t(n)\|^2] \]
\[= \frac{\|t(n)\|^2 \sigma^2_{n_1} \beta_1}{\sigma^2_{n_2} N_l}, \]

where similar derivation steps as in \[\{10\} \] are adopted and \(\beta_1 \) is defined as \(M_p + \sigma^2_{n_2} tr(Q_1^H) \).

In fact, there is no way to restrict the instant interference \(I(n) \) at each time slot \(n \) since \(\hat{U}_1 \) itself contains the randomness. Therefore, we only need to deal with the average interference during the training, defined as
\[I = \frac{1}{N_t} \sum_{n=N_t+1}^{N_t+N_l} I(n) = \frac{\sigma^2_{n_1} \beta_1 tr(\hat{F}^H \hat{F})}{\sigma^2_{n_2} N_l N_t}. \]

Suppose the average interference temperature that can be tolerated at PR is \(\zeta \). Then, the following constraint should be satisfied during the training:
\[tr(\hat{F}^H \hat{F}) \leq \frac{\zeta \sigma^2_{n_2} N_l N_t}{\sigma^2_{n_1} \beta_1}. \]

Note that, the single scalar \(\frac{\zeta \sigma^2_{n_2} N_l N_t}{\sigma^2_{n_1} \beta_1} \) should be a standard parameter that can be obtained from PR.

3. Learning/Training Tradeoff

At a first glance, larger value of \(N_t \) is desirable from the viewpoint of environmental learning at CRs. On the other side, larger value of \(N_t \) is preferable for channel estimation by assuming the average power of CR-Tx is \(P_t \). Even if the total power constraint \(P_t \) is applied, one cannot expect \(N_t \) to be small; otherwise the average interference \(I \) in \[\{13\} \] will exceed the threshold. Note that a similar tradeoff has also been studied in \[\{3\} \] between spectrum sensing and data transmission for single antenna CR system. However here, we propose the tradeoff between the environmental learning and the channel training in a multi-antenna CR system.

3.1. Average Power Constraint

In this case, the maximum power that CR-Tx can spend during training is \(N_t P_t \). The optimization is derived as
\[\begin{align*}
\min_{T, N_t, N_l} & \left(\frac{(a)}{N_l} + 1 \right) tr(\hat{F}^H \hat{F})^{-1} \\
\text{s.t.} & \quad tr(\hat{F}^H \hat{F}) \leq \min \left\{ \frac{\zeta \sigma^2_{n_2} N_l N_t}{\sigma^2_{n_1} \beta_1}, N_t P_t \right\}, \\
& \quad N_l + N_t = N, \quad N_t \geq (M_1 - M_p),
\end{align*} \]

where the last constraint is required to successfully execute the channel estimation. It can be easily known that the optimal \(\hat{F}^H \hat{F} \) is a scale of identity matrix regardless of the parameters \(N_t, N_l \). The optimization is decoupled into the following two cases:

1): When \(P_t \geq \frac{\zeta \sigma^2_{n_2} N_l N_t}{\sigma^2_{n_1} \beta_1} \), \(\hat{F}^H \hat{F} = \frac{N_l P_t}{(M_1 - M_p)} I \) and \(N_l \) should be found from:
\[\begin{align*}
\min_{N_l} & \quad f_1(N_l) = \frac{1}{N_l(N - N_l)} \left(\frac{(a)}{N_l} + 1 \right) \\
\text{s.t.} & \quad N_l \leq N - (M_1 - M_p),
\end{align*} \]

The solution can be directly found by checking all the roots of \(f(N_l) \) and the boundary point \(N_l = N - (M_1 - M_p) \), whose explicit expression is omitted due to the lack of space.

2): When \(P_t < \frac{\zeta \sigma^2_{n_2} N_l N_t}{\sigma^2_{n_1} \beta_1} \), \(\hat{F}^H \hat{F} = \frac{N_l P_t}{(M_1 - M_p)} I \) and \(N_l \) should be found from:
\[\begin{align*}
\min_{N_l} & \quad f_2(N_l) = \frac{1}{(N - N_l)} \left(\frac{(a)}{N_l} + 1 \right) \\
\text{s.t.} & \quad N_l \leq N - (M_1 - M_p).
\end{align*} \]

The optimal solution can be found similarly as in \[\{16\} \].

3.2. Total Power Constraint

In this case, we assume that the total power reserved for training is \(P_t \). The optimization problem is the same as \[\{15\} \] except that the first constraint in \[\{15\} \] is replaced by \(tr(\hat{F}^H \hat{F}) \leq \min \{ \frac{\zeta \sigma^2_{n_2} N_l N_t}{\sigma^2_{n_1} \beta_1}, P_t \} \). The related discussion is similar to that in Section 3.1 and is omitted for brevity.
4. SIMULATIONS

We consider a PR terminal with $M_p = 2$ antennas transmitting with probability $\alpha = 0.5$, and a CR system with $M_1 = M_2 = 4$ antennas. The total initialization time assigned for CR is $N = 1000$ and we fix the average transmit power of CR-Tx as 20 dB.

In the first example, we numerically examine the theoretical expression of the interference temperature (13) for $\sigma_s^2 = 0$ dB and $\sigma_s^2 = 20$ dB, respectively. The ML estimate $\hat{Q}_j, j = 1, 2$ are used to derive β_j. The figure of merit is the inverse of the normalized interference temperature (INIT) $1 / (\sigma_s^2 I)$. As shown in Fig. 2, the numerical and theoretical results match each other quite well. The higher σ_s^2 yields higher INIT because it has a smaller β_2.

In Fig. 3, we provide the numerical results of the inverse channel estimation MSE $1 / J$ versus N_t for $\sigma_s^2 = 0$ dB and $\sigma_s^2 = 20$ dB, respectively. For simplicity, the threshold ζ is normalized according to $\zeta = \sigma_s^2 = 1$ for different σ_s^2. The analytical performance curve is also displayed in the same figure. Clearly, analytical results match the numerical ones, which means that the solution N_t to (15) can well guide the optimality of the practical initialization.

5. CONCLUSIONS

In this work, we present a new CR scheme when both CR terminals are equipped with multiple antennas. With the help of the environmental learning, we design the transmit beamforming and receive beamforming that could reduce the interference to and from PR during the CR training and transmission. We found that there is a tradeoff between environmental learning and channel training if the overall initialization time is fixed. Finally, numerical examples are provided to corroborate the proposed studies.

6. REFERENCES

