BLIND CHANNEL ESTIMATION FOR MULTIUSER CDMA SYSTEMS WITH LONG SPREADING CODES

Zhengquan (Daniel) Xu Michail K. Tsatsanis

Electrical & Computer Engr. Dept.
Stevens Institute of Technology
Castle Point on Hudson
Hoboken, NJ 07030
e-mail: mtsatsan@stevens-tech.edu

ABSTRACT

In this paper, correlation-matching techniques are employed to estimate multipath channel parameters for a multiuser CDMA system with long spreading codes. For given code sequences, the output correlation matrix (parametrized by the unknown channel coefficients) is compared with its instantaneous approximation. By minimizing the Frobenious norm of the resulting error matrix the channel parameters can be estimated up to a scalar ambiguity. Under the assumption of i.i.d. code sequences, identifiability for each channel is guaranteed and the asymptotic convergence of the proposed algorithm is established. Simulation results confirm our claims. Comparisons with other methods are also provided.

1. INTRODUCTION

DS-CDMA technology has several advantages over competing TDMA/FDMA alternatives and is a serious candidate for the next generation wireless networks. Agreement however has not been reached yet on whether future systems will employ short codes (which repeat at every bit) or long codes whose period spans a very large number of bits. Many current systems (e.g. IS-95) employ long codes [4].

From a signal processing viewpoint, the short code case is more tractable since the interference pattern does not change from bit to bit. It is not surprising that most of the past research effort has focused on the short code case (e.g. [1], [5]). Unfortunately, long spreading codes introduce time-varying user signatures rendering classical adaptive multiuser algorithms impractical [5].

Recent research efforts however have focused on the long code case and have contributed to the design of new blind receivers suitable for such systems [8], [10]. In these approaches, the channel parameters are first estimated and receivers can then be constructed. We focus on channel estimation problems in this paper by employing correlation matching techniques which have been extensively analyzed and applied to a multitude of problems in blind identification [7], detection [4] and channel estimation [2]. Extensions to the time-varying systems have been reported in [9].

In the current setup the users' signatures are time-varying due to the changing codes at every bit. However the multipath parameters are kept constant. We therefore can match the output covariance matrix (parametrized by these unknown channel parameters) with instantaneous approximations based on the received data. By minimizing the resulting error, closed form solutions of channel vectors within a scalar ambiguity are obtained. Moreover, their asymptotic performance is studied. It is established that our estimates for all corresponding channels strongly converge to their true parameters. Based on simulation results, the proposed method shows better performance compared with subspace based approach [10] for a heavily loaded system.

2. PROBLEM STATEMENT

In a DS-CDMA communication system with M users, let us assume user j ($j = 1, \ldots, M$) transmits a zero-mean, i.i.d. bit sequence $w_j(n)$ with variance $\sigma^2_{w_j} = E[|w_j(n)|^2]$. Every bit is spread by an independently assigned i.i.d. code sequence. Let us define $c_{j,k}(n), n = 1, \ldots, P$, to be the spreading code of user j, bit k, with P chips (n is the chip index). Then at the chip-rate receiver, the output signal contributed by user j is (see Fig. 1)

$$ y_j(n) = \sum_{k=-\infty}^{\infty} w_j(k) h_{j,k}(n-kP) $$ (1)

$$ h_{j,k}(n) = \sum_{m=-\infty}^{\infty} g_j(m) c_{j,k}(n-m-\delta_j) $$ (2)

where $h_{j,k}(n)$ is the signature of user j for bit k with chip index n, $0 \leq \delta_j < P$ is the delay in chip periods, $g_j(n)$ is the discrete-time equivalent channel impulse response which includes the transmitter and receiver filters. The overall received signal $y(n)$ is then a superposition of signals from all M users corrupted by AWGN $v(n)$

$$ y(n) = \sum_{j=1}^{M} g_j(n) + v(n) $$ (3)

where $v(n)$ has zero-mean and variance $\sigma^2_v = E[|v(n)|^2]$. In practice, communication channels are usually modeled as having finite impulse response. In the sequel the maximum order for all multipath channels $g_j(n)$ is assumed to be q.

To obtain a compact form of our model in an observation interval, let us collect $P+q$ samples of $y(n)$ in a vector $y(n) = [y(nP+1), \ldots, y(nP+P+q)]^T$. Then from (1), (2) and (3), the received signal $y(n)$ becomes

$$ y(n) = \sum_{j=1}^{M} [h_{j,n+1}(n)+\tilde{h}_j w_j(n+1)+\tilde{h}_j w_j(n+1)]+v(n) $$ (4)

where $h_j = [0, \ldots, 0, h_{j,n}(1), \ldots, h_{j,n}(P+q)]^T$, $\tilde{h}_j = [h_{j,n+1}(P+1-\delta_j), \ldots, h_{j,n+1}(P+q), 0, \ldots, 0]^T$ and $\tilde{h}_j = [0, \ldots, 0, h_{j,n+1}(1), \ldots, h_{j,n+1}(q-\delta_j)]^T$ are signatures of

1 This work was supported in part by the National Science Foundation Grant NSF-NCR 9706658, NSF-CCR 9733948 and the Army Research Office Grant DAAG55-98-1-0224.
3. BLIND MULTIUSER CHANNEL ESTIMATION

Let \(\hat{\mathbf{R}}_y(n) \) denote some estimator of \(\mathbf{R}_y(n) \) and let us build our cost function as

\[
J = \frac{1}{N} \sum_{n=1}^{N} \| \mathbf{R}_y(n) - \hat{\mathbf{R}}_y(n) \|_F^2.
\]

where \(N \) is the number of bits available. By applying the relationship between \(\| \cdot \|_F \) of a matrix and its trace, it can be written as

\[
J = \frac{1}{N} \sum_{n=1}^{N} tr \left([\mathbf{R}_y(n) - \hat{\mathbf{R}}_y(n)][\mathbf{R}_y]^H(n) - \hat{\mathbf{R}}_y]^H(n) \right).
\]

By minimizing (10) with respect to \(\sigma^2_v \) and \(\sigma_{w_j} \), these unknowns could in principle be obtained.

However, two types of difficulties will impede our estimation. First, \(\hat{\mathbf{R}}_y(n) \) needs to be known in (10). Due to the time-varying property of \(\mathbf{R}_y(n) \), the sample average over the data record (which is usually used for a time invariant system) is not applicable here. Instead, we use instantaneous approximations \(\hat{\mathbf{R}}_y(n) = \mathbf{y}(n)\mathbf{y}^H(n) \) to substitute in (10) and obtain

\[
J = \frac{1}{N} \sum_{n=1}^{N} tr \left([\mathbf{R}_y(n) - \mathbf{y}(n)\mathbf{y}^H(n)][\mathbf{y}(n)\mathbf{y}^H(n)]^2 \right)
\]

where the Hermitian property of the correlation matrix is used. By minimizing J in (11) with respect to \(\mathbf{g}_j \), we can obtain its estimate \(\hat{\mathbf{g}}_j \). It may seem that \(\mathbf{R}_y(n) \) is very inaccurate and hence \(\hat{\mathbf{g}}_j \) will not be accurate. But our cost function J employs all data points and results in surprisingly reliable estimates. This is further supported by our consistency results.

Secondly, \(\mathbf{J} \) is the fourth order function of the unknowns \(\mathbf{g}_j \), thus its high nonlinearity may lead to difficulties in estimating the channel vector \(\mathbf{g}_j \). With this in mind, if we let \(\mathbf{D}_j = \sigma^2_v \mathbf{g}_j \mathbf{g}_j^H \), then (8) becomes a linear function of \(\mathbf{D}_j \) and \(\sigma^2_v \)

\[
\mathbf{R}_y(n) = \sum_{j=1}^{M} \mathbf{T}_j + \sigma^2_v \mathbf{I}
\]

with \(\mathbf{T}_j = C_{j,1} \mathbf{D}_j C_{j,1}^H + C_{j,2} \mathbf{D}_j C_{j,2}^H + C_{j,3} \mathbf{D}_j C_{j,3}^H \).

Substituting (12) in (11), our cost function becomes

\[
J = \frac{1}{N} \sum_{n=1}^{N} tr \left([\sum_{j=1}^{M} \mathbf{T}_j + \sigma^2_v \mathbf{I} - \mathbf{y}(n)\mathbf{y}^H(n)]^2 \right)
\]

Thus we arrive at a quadratic function by overparametrizing the problem using \(\mathbf{D}_j \) instead of \(\mathbf{g}_j \). If we minimize this cost function, a unique closed form solution can be obtained. Let’s first define the derivative of \(J \) with respect to a matrix \(\mathbf{D}_j \) as a matrix, with \((k,m)\)-th element equal to the derivative with respect to the \((k,m)\)-th element of \(\mathbf{D}_j \), i.e., \([\nabla \mathbf{D}_j]_{k,m} = \nabla d_{k,m} \). To find the minimum solution of (13), it is sufficient to differentiate it with respect to \(\sigma^2_v \) and \(\mathbf{D}_j \) respectively, and set these derivatives equal to zero. To obtain a closed form solution \(\mathbf{D}_j \), here we define an unknown vector \(\mathbf{d}_j \) which is a vector formed by stacking all columns of \(\mathbf{D}_j \) into one long vector (see [6, Ch. 12]) performed by the vec function \(\mathbf{d}_j = vec(\mathbf{D}_j) \), and furthermore define a vector \(\mathbf{d} = [(d_{11})^T, \ldots, (d_{MM})^T]^T \) which contains all our unknown parameters. Based on properties of the Kronecker product “⊗” (see [6, Ch. 12]), it is shown in Appendix A that the estimate \(\hat{\mathbf{d}} \) satisfies the following equation

\[
\mathbf{T} \hat{\mathbf{d}} = \mathbf{t}
\]
with
\[
T = \frac{1}{N} \sum_{n=1}^{N} (Q^T Q) - \frac{1}{(P + q)N^2} \sum_{n=1}^{N} b(n) \sum_{n=1}^{N} |b(n)|^H
\]

\[
t = \frac{1}{N} \sum_{n=1}^{N} (Q^T \text{vec}[y(n)]y^H(n) - \sum_{n=1}^{N} y^H(n)y(n)) \sum_{n=1}^{N} b(n)
\]

(15)

where
\[
Q = [Q_1, \ldots, Q_M],
\]
\[
Q_j = C_{j,1}^* \otimes C_{j,1} + C_{j,1}^* \otimes C_{j,2} + C_{j,2}^* \otimes C_{j,3}
\]

(16)

(17)

\(c_{j,1} \) denotes complex conjugate, and \(C_{j,1}, C_{j,2}, C_{j,3} \) are given by (6). Notice that all code matrices depend on time, but the time index is dropped for the sake of notational convenience, therefore \(H \) and \(Q \) are also time-variant. In (14) there are \(M(q + 1)^2 \) unknown parameters in \(\mathbf{d} \) and \(M(q + 1)^2 \) equations. \(\mathbf{d} \) can be uniquely solved as
\[
\mathbf{d} = \mathbf{T}^+ \mathbf{t}
\]

(19)
as long as the matrix \(\mathbf{T} \) is nonsingular as will be discussed in the next section. According to our definitions of \(\mathbf{d} \), our estimates \(\mathbf{d}_j \) can be obtained by taking out corresponding elements of \(\mathbf{d} \). Then the reverse operation of vec function can be performed to obtain \(\mathbf{D}_j \).

Once \(\mathbf{D}_j \) is found, SVD on \(\mathbf{D}_j \) can be performed to obtain its eigenvector corresponding to the unique maximum eigenvalue, which is our estimated normalized channel vector \(\mathbf{g}_j \) for user \(j \). The computational load of this SVD operation is not severe because \(\mathbf{D}_j \) is a \((q + 1) \times (q + 1) \) small size matrix for moderate channel order \(q \).

The proposed algorithm is batch and requires knowledge of all users’ codes. Adaptive versions are possible but will be reported elsewhere. Also, modified versions are possible when only knowledge on a single user’s code is available (single user receivers). They will not be reported here however, due to lack of space.

4. PERFORMANCE ANALYSIS

As is well-known, the minimization of the quadratic cost function in (13) admits a unique solution, but the question here is if this solution can guarantee consistency as \(N \rightarrow \infty \). To establish the identifiability of the problem, we start from eq. (14) and show that our solution in (19) strongly converges to \(\mathbf{d} \). The asymptotic result will be presented without proof due to the limited space.

To simplify our analysis, we assume that all \(M \) users are synchronous, which means \(\sigma_j = 0 \) for \(j = 1, \ldots, M \). Therefore \(C_{j,1} = C \), according to eq. (6). Moreover, since \(q \ll P \) in practice, then \(C_{j,2}, C_{j,3} \) in (6) are only a small portion of \(C_j(n) \) which will be ignored next. Hence, in our eqs. (17)-(18), \(Q_j = C_j^* \otimes C_j, H_j = C_j^H C_j \). Furthermore, the long spreading codes are assumed to be real for the same purpose. Then \(C_j^H = C_j^I \) and \(C_j^I = C_j \), as well as \(b^H = b^T \) are valid.

Lemma 1: If all code sequences \(c_j(n) \) \((j = 1, \ldots, M) \) are assumed i.i.d. taking values from \(\{+1,-1\} \) and independent of both the transmitted bits and the AWGN, then it can be shown that as \(N \rightarrow \infty, T \) and \(t \) in (15) and (16) converge to \(\mathbf{U} \) and \(\mathbf{U} \mathbf{d} \) with probability 1 respectively, that is
\[
T \rightarrow P \mathbf{U}, \quad t \rightarrow P \mathbf{U} \mathbf{d}
\]

where \(\mathbf{U} = \tilde{\mathbf{A}} - \frac{1}{P+q} \mathbf{b} \mathbf{b}^H, \mathbf{b} = P \text{vec}(\mathbf{I}_{q+1}) \) with \(M \) blocks, \(\mathbf{I}_{q+1} \) is a \((q + 1) \times (q + 1) \) identity matrix, \(\tilde{\mathbf{A}} \) has \(M \times M \) blocks and \(\mathbf{J} \) is of dimension \((q + 1) \times (q + 1) \) given by
\[
\tilde{\mathbf{A}} = \begin{bmatrix}
\mathbf{B}_1 & \mathbf{B}_2 & \cdots & \mathbf{B}_q \\
\mathbf{B}_2 & \mathbf{B}_1 & \cdots & \mathbf{0} \\
\cdots & \cdots & \cdots & \cdots \\
\mathbf{B}_q & \cdots & \cdots & \mathbf{0}
\end{bmatrix}, \quad \mathbf{J} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots
\end{bmatrix}
\]

\[
\mathbf{B}_1 = \begin{bmatrix}
X_0 & X_1 & \cdots & X_q \\
\cdots & \cdots & \cdots & \cdots \\
X_{q-1} & X_{q-2} & \cdots & X_1 \\
X_0 & X_1 & \cdots & X_{q-1}
\end{bmatrix}, \quad \mathbf{B}_2 = \begin{bmatrix}
Y_0 & Y_1 & \cdots & Y_q \\
\cdots & \cdots & \cdots & \cdots \\
Y_{q-1} & Y_{q-2} & \cdots & Y_1 \\
Y_0 & Y_1 & \cdots & Y_{q-1}
\end{bmatrix}
\]

for \(m = 1, \ldots, q \); matrix \(\mathbf{X}_m \) only has non-zero elements along its \(m \)-th upper and lower diagonal and \(\mathbf{Y}_m \) has non-zero elements along its \(m \)-th upper diagonal. □

According to Lemma 1, identifiability in this problem is equivalent to the non-singularity of matrix \(\mathbf{U} \). Notice that matrix \(\mathbf{U} \) depends only on the parameters \(P, M \) and \(q \). For a large range of possible \(P \) (e.g., up to 526), \(M \) (with \(M \leq P \)) and \(q \) (e.g., 1 to 20), it is true that \(\mathbf{U} \) is nonsingular. We have been unable however to obtain a general proof of this conjecture.

The nonsingularity of matrix \(\mathbf{U} \) indicates that \(\mathbf{D}_j \) asymptotically converges to \(\mathbf{D}_j \) for all possible \(j \) \((j = 1, \ldots, M) \). Since the normalized channel \(\frac{\mathbf{g}_j}{\|\mathbf{g}_j\|} \) is the eigenvector of \(\mathbf{D}_j \) corresponding to its maximum eigenvalue, all channel parameters can be identified up to a scalar ambiguity.

5. SIMULATIONS

In our experiment, a DS-CDMA system is simulated. All users have equal power. Their transmitted bits and assigned long spreading codes are assumed i.i.d. taking values from \(\{+1,-1\} \). Other values are set as \(P = 16 \) (e.g., [8]), \(q = 3 \), and the bit SNR is 15dB. We will use the mean square error (MSE) of the channel estimates \(\hat{E}([\hat{g}_j - g_j]^2) \) as the performance measure, where \(\hat{g}_j \) is the normalized channel vector for user \(j \) and \(g_j \) is its estimate. This expected value is approximated by the average result from 50 Monte Carlo runs.

The result for the proposed method (batch) is shown in Fig. 2 with \(M = 8 \). Each user transmitted 500 bits. Since there are no critical differences between estimates for different users, the MSE is presented only for four users, in a), b), c), d) respectively. It can be seen that the MSE for each channel of the proposed method reaches \(10^{-4} \) after 200 bits are transmitted.

Our next experiment is to compare the proposed method with the recently presented subspace method [10] for systems with different loads. We assume all users experience the common multipath channel and implement the subspace approach in [10] by assigning the desired user in group 1 and all other users in group 2. The channel estimation errors for a 2-user system are compared in Fig. 3(a), while for an 8-user system in Fig. 3(b). Solid lines represent the proposed method while dashed lines for the subspace method. It can be observed that the subspace method has better performance than the proposed algorithm when the system
has only a few users according to Fig. 3(a). However it converges to a high error level under heavy load based on Fig. 3(b).

Appendix A: Derivation of Equation (14)
In order to solve for D_j and σ^2_v, we follow our definition of the derivative and differentiate (13) with respect to σ^2_v and D_j respectively,
\begin{align*}
\nabla_{\sigma^2_v} J &= \frac{2(P + q)}{N} \sum_{n=1}^{N} \left[tr\left(\sum_{m=1}^{M} T_m \right) \right] - y^H(n)y(n) \right) \right] \quad (20) \\
\nabla_{D_j} J &= \frac{2}{N} \sum_{n=1}^{N} \left[\left(\sum_{m=1}^{M} T_m + \sigma^2_v I - y(n)y^H(n) \right) \right] C_{j,1}^T \\
&+ \left(\sum_{m=1}^{M} T_m + \sigma^2_v I - y(n)y^H(n) \right) C_{j,2}^T \\
&+ \left(\sum_{m=1}^{M} T_m + \sigma^2_v I - y(n)y^H(n) \right) C_{j,3}^T \\
&+ \left(\sum_{m=1}^{M} T_m + \sigma^2_v I - y(n)y^H(n) \right) C_{j,4}^T \quad (21)
\end{align*}

Where \ast^+ represents complex conjugate and T_j is previously defined. At the equilibrium points $(\hat{\sigma}^2_v, \hat{D}_j)$ of our cost function J, these derivatives are equal to zero. By setting (20) to zero, σ^2_v is obtained first as
\begin{equation}
\sigma^2_v = \frac{1}{(P + q)N} \sum_{n=1}^{N} \left[tr\left(\sum_{m=1}^{M} T_m \right) \right] \quad (22)
\end{equation}

where T_m is obtained via replacing D_m by D_m in T_m. By using the property of the trace of the product of matrices, (22) becomes
\begin{equation}
\sigma^2_v = \frac{1}{(P + q)N} \sum_{n=1}^{N} \left[tr\left(\sum_{m=1}^{M} T_m \right) \right] \quad (23)
\end{equation}

where $b(n)$ is given by (18). Substituting (23) in (21), and setting it to zero, we can arrive at an equation for d. To obtain a closed form solution, we take vec operation on both sides of this new equation. By applying the properties of Kronecker product (see [6, Ch. 12]) and stacking all equations for $j = 1, \ldots, M$ together, (14) can be obtained. □

REFERENCES