AN EFFICIENT RADAR TRACKING ALGORITHM USING MULTIDIMENSIONAL GAUSS-HERMITE QUADRATURES

Wing Ip Tam and Dimitrios Hatzinakos

University of Toronto, Department of Electrical and Computer Engineering
10 King’s College Rd., Toronto, Ontario, Canada, M5S 3G4
Tel: (416) 978-1613, Fax: (416) 978-4425, e-mail: dimitris@comm.toronto.edu

ABSTRACT

In radar tracking target motion is best modeled in Cartesian coordinates. Its position is however measured in polar coordinates (range and azimuth). Tracking in Cartesian coordinates with noisy polar measurements requires either converting the measurements to a Cartesian frame of reference and then applying the linear Kalman filter to the converted measurements [1] or using the extended Kalman filter (EKF) [2] in mixed coordinates. The first approach is accurate only for moderate cross-range errors; the second approach is consistent only for small errors. A new efficient tracking algorithm using the multidimensional Gaussian-Hermite quadratures [3] to propagate the mean and the covariance of the conditional probability density function is presented. This method is compared with the EKF and the converted measurement Kalman filter (CMKF) and it is shown to be more accurate.

1. INTRODUCTION

In target tracking the motion of a moving target is best described in Cartesian coordinates by the following state-space model [4].

\[ \mathbf{x}_{n+1} = \mathbf{F} \cdot \mathbf{x}_n + \mathbf{G} \cdot \mathbf{v}_n \]  

where \( \mathbf{x}_n \) is the vector of Cartesian coordinates target states \( [x_n, v_{x,n}, y_n, v_{y,n}] \); \( x_n \) and \( y_n \) are the position of the target in \( x \) and \( y \) directions; \( v_{x,n} \) and \( v_{y,n} \) are the velocities of the target in \( x \) and \( y \) directions. \( \mathbf{F} \) is the state transition matrix; \( \mathbf{G} \) is the noise gain matrix. \( \mathbf{v}_n \) is the system noise process which is modeled as a zero-mean white Gaussian random process with covariance matrix \( \mathbf{Q}_n \).

The polar coordinate measurement of the target position is related to the Cartesian coordinate target state as follows:

\[ \mathbf{z}_n = \mathbf{h}(\mathbf{x}_n) + \mathbf{w}_n \]  

where \( \mathbf{z}_n \) is the vector of polar coordinates measurement \( [r_n, \theta_n] \); \( r_n \) is the range and \( \theta_n \) is the azimuth of the target. \( \mathbf{h}(\cdot) \) is the Cartesian-to-polar coordinate transformation. \( \mathbf{w}_n \) is the observation noise process which is assumed to be zero-mean white Gaussian noise process with covariance matrix \( \mathbf{R}_n \). Target tracking becomes the problem of estimating the target states \( \mathbf{x}_n \) from the noisy polar measurements \( \mathbf{z}_n \).

Target tracking in Cartesian coordinates using polar measurements can be handled in two ways. One method is called the converted measurement Kalman filter (CMKF) [1], which uses a Kalman filter with polar measurements converted to a Cartesian frame of reference. In this case the Cartesian components of the errors in the converted measurements become correlated and non-Gaussian, which can seriously degrade the performance of the Kalman filter. An improved method using debiased converted measurements [5] is showed to be more accurate and consistent for all practical situations. The other method is the extended Kalman filter (EKF) which employs the first-order Taylor series approximation to adapt the linear Kalman filter to the nonlinear system described by equations (1) and (2). Error is introduced because higher-order terms in the series are ignored and linearization is done about the predicted state, not the actual state. There exists alternative approaches to the EKF such as the “quasi-extended” Kalman filter [6], which shows improvements when tracking maneuvering targets at close range.

To improve the performance of the existing approaches, a new tracking algorithm based on multidimensional Gaussian-Hermite quadrature is presented. Instead of approximating the nonlinear measurement equation (2) with a linear one with white Gaussian noise, our approach uses multidimensional Gaussian-Hermite quadrature to evaluate the optimal estimate of the target states at each iteration directly from the Bayesian equations [7]. This quadrature technique approximates the integrals in the Bayesian equations as summations and this approximation can be very accurate when the integrand is smooth. To reduce the computation of applying these quadratures analytic results are employed in the prediction stage because the system dynamics are linear; quadrature techniques are applied only to the measurement update stage. Simulation results show that this method is more accurate than the EKF and the converted measurement Kalman filter (CMKF).

2. THE OPTIMAL NONLINEAR FILTER

The optimal nonlinear filter computes the minimum-variance estimate of the state at each discrete time \( n \) which is just the mean of the state density function conditioned on the measurement history \( \mathbf{Z}^n : \mathbf{z}_0, \ldots, \mathbf{z}_n \).

\[ \hat{\mathbf{x}}_{opt,n} = E[\mathbf{x}_n|\mathbf{Z}^n] = \int \mathbf{x}_n p(\mathbf{x}_n|\mathbf{Z}^n) \, d\mathbf{x}_n \]  

\( \hat{\mathbf{x}}_{opt,n} \) is the optimal estimate of the state at time \( n \), \( E[\cdot] \) is the expectation operator, \( p(\mathbf{x}_n|\mathbf{Z}^n) \) is the posterior probability density function of \( \mathbf{x}_n \) given \( \mathbf{Z}^n \). The optimal nonlinear filter uses the optimal filtering equation for a system with non-linear measurement equation and Gaussian noise, which is given by

\[ \hat{\mathbf{x}}_{opt,n} = \mathbf{F}_{opt,n} \hat{\mathbf{x}}_{opt,n-1} + \mathbf{g}_{opt,n} \mathbf{y}_n \]  

where \( \mathbf{F}_{opt,n} \) is the state transition matrix for the optimal nonlinear filter, \( \mathbf{g}_{opt,n} \) is the gain matrix for the measurement update stage.
This requires the \textit{a posteriori} density function \( p(\mathbf{x}_n \mid Z^n) \) to be known at each iteration. This density function can be determined recursively by the following Bayesian equations [8]:

\[
p(\mathbf{x}_n \mid Z^n) = \frac{p(\mathbf{x}_n \mid Z^{n-1}) p(\mathbf{z}_n \mid \mathbf{x}_n)}{p(\mathbf{z}_n \mid Z^{n-1})} \quad (4)
\]

\[
p(\mathbf{x}_n \mid Z^{n-1}) = \int p(\mathbf{x}_{n-1} \mid Z^{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1}) d\mathbf{x}_{n-1} \quad (5)
\]

where the normalizing constant \( p(\mathbf{z}_n \mid Z^{n-1}) \) in equation (4) is given by

\[
p(\mathbf{z}_n \mid Z^{n-1}) = \int p(\mathbf{x}_n \mid Z^{n-1}) p(\mathbf{z}_n \mid \mathbf{x}_n) d\mathbf{x}_n \quad (6)
\]

By assumption, the density function \( p(\mathbf{z}_n \mid \mathbf{x}_n) \) in equation (4) has a Gaussian distribution with mean \( \mathbf{h}(\mathbf{x}_n) \) and covariance matrix \( \mathbf{R}_n \).

\[
p(\mathbf{z}_n \mid \mathbf{x}_n) = \frac{1}{2\pi|\mathbf{R}_n|^{1/2}} e^{-\frac{1}{2}(\mathbf{z}_n - \mathbf{h}(\mathbf{x}_n))^T \mathbf{R}_n^{-1} (\mathbf{z}_n - \mathbf{h}(\mathbf{x}_n))} \quad (7)
\]

Similarly, the density \( p(\mathbf{x}_n \mid \mathbf{x}_{n-1}) \) in equation (5) also has a Gaussian distribution with mean \( \mathbf{F}\mathbf{x}_{n-1} \) and covariance matrix \( \mathbf{GQ}_n \mathbf{G}^T \).

The initial \textit{a posteriori} density \( p(\mathbf{x}_0 \mid Z^0) \) is given by

\[
p(\mathbf{x}_0 \mid Z^0) = p(\mathbf{x}_0) = \frac{p(\mathbf{x}_0) p(\mathbf{z}_0 \mid \mathbf{x}_0)}{p(\mathbf{z}_0)} \quad (8)
\]

where \( p(\mathbf{x}_0) \) is usually assumed to be white Gaussian.

It is however generally impossible to accomplish the integration indicated in equations (5) and (6) in closed form because of the presence of the nonlinear function \( \mathbf{h}(\mathbf{x}_n) \). When the measurement equations are linear and the initial state and the noise sequences are Gaussian, then the equations (5) and (6) can be evaluated in closed form and the posterior density \( p(\mathbf{x}_n \mid Z^n) \) is Gaussian for all \( n \). The mean and the covariance matrix of the \textit{a posteriori} density \( p(\mathbf{x}_n \mid Z^n) \) are known as the Kalman filter equations. Most of the sub-optimal nonlinear filters are based on the linear Kalman filter equations by transforming the nonlinear measurement equation into a linear equation with white additive Gaussian noise, i.e., forcing the requirements of the Kalman filter equations satisfied. The next section presents two sub-optimal filters used extensively in target tracking in Cartesian coordinates with noisy polar measurements.

3. SUB-OPTIMAL NONLINEAR FILTERS FOR RADAR TRACKING

3.1. Extended Kalman Filter (EKF)

In the “mixed coordinate” EKF [2] the state is in Cartesian coordinates and the measurements are in polar coordinates. Therefore, there is a nonlinear measurement function \( \mathbf{h}(\mathbf{x}_n) \). Denote the first order Taylor series approximation of this nonlinear function about the predicted state \( \hat{\mathbf{x}}_{n \mid n-1} \) as \( \mathbf{h}(\mathbf{x}_n) \); it is given by the following equation:

\[
\mathbf{h}(\mathbf{x}_n) = \mathbf{h}(\hat{\mathbf{x}}_{n \mid n-1}) + \mathbf{H}_n (\mathbf{x}_n - \hat{\mathbf{x}}_{n \mid n-1}) \quad (9)
\]

where \( \mathbf{H}_n \) is the Jacobian of the nonlinear function \( \mathbf{h}(\mathbf{x}_n) \)

\[
\mathbf{H}_n = \left[ \frac{\partial \mathbf{h}(\mathbf{x}_n)}{\partial \mathbf{x}_n} \right]_{x_n = \hat{x}_{n \mid n-1}}
\]

When the above approximation is substituted into the derivations of the standard Kalman filter equations, the Extended Kalman filter equations are obtained. Its accuracy however depends heavily on the stability of the Jacobian matrix. In practice, the Jacobian matrix is often numerically unstable resulting in filter divergence.

3.2. Converted Measurement Kalman Filter (CMKF)

With the converted measurement Kalman filter [1], the polar coordinate measurement \( \mathbf{z}_n^p \) is first converted to the Cartesian coordinate measurements \( \mathbf{z}_n^c \) using an inverse nonlinear transformation \( \mathbf{h}^{-1}(\mathbf{z}_n^p) \). The original noise process \( \mathbf{w}_n \) acting on the converted measurement \( \mathbf{z}_n^c \) no longer behaves rigorously as an additive term, but in some complicated fashion. However, at least when the covariance of the noise \( \mathbf{w}_n \) is small, the new Cartesian coordinate measurement equation can be written as follows:

\[
\mathbf{z}_n^c = \mathbf{D}\mathbf{x}_n + \tilde{\mathbf{w}}_n \quad (10)
\]

where \( \mathbf{D} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \) and \( \tilde{\mathbf{w}}_n \) is approximated as a white Gaussian noise process on the converted measurement \( \mathbf{z}_n^c \) with zero mean and covariance matrix \( \mathbf{M}_n \).

\[
\mathbf{M}_n = E[\tilde{\mathbf{w}}_n \tilde{\mathbf{w}}_n^T] = \left[ \frac{\partial \mathbf{h}^{-1}(\mathbf{z}_n^p)}{\partial \mathbf{z}_n^p} \right]^T \mathbf{R}_n \left[ \frac{\partial \mathbf{h}^{-1}(\mathbf{z}_n^p)}{\partial \mathbf{z}_n^p} \right] \quad (11)
\]

where \( \tilde{\mathbf{w}}_n \) is the predicted measurement. As a result, the new measurement equation in Cartesian coordinates becomes linear and the noise process is Gaussian, the standard Kalman filter can be applied. This method however is an acceptable approximation only for moderate cross-range errors.

4. PROPOSED FILTER

4.1. Basic Principles

Instead of transforming the measurement equation linear and the observation noise Gaussian, our method evaluates the optimal estimate of the target states from the Bayesian equations (4) and (5) directly using multidimensional Gaussian-Hermite quadratures [7]. Multidimensional Gaussian-Hermite quadrature is an approximation of an multidimensional integral of a function of the following form with a weighted sum of the functional values evaluated at a set of pre-defined grid points [3].

\[
\int_{\mathbf{R}_n} f(\mathbf{x}) e^{-\frac{(\mathbf{x} - \mathbf{z})^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{z})}{2}} d\mathbf{x} \approx \sum_{i=1}^{N} w_i f(\mathbf{x}_i) \quad (12)
\]

where \( \mathbf{x} \) and \( \tilde{\mathbf{x}} \) are \( n \)-dimensional vector and \( \mathbf{P} \) is a \( n \times n \) nonsingular matrix; \( \mathbf{x}_i \) is the \( i^{th} \) \( n \)-dimensional grid points and \( w_i \) is the corresponding weight. \( N \) is the total number.
of grid points. The complexity of this quadrature technique is of order of $N$. This approximation is very accurate especially when the function $f(x)$ is algebraic.

To evaluate the state prediction density $p(x_n|z_{n-1})$ efficiently from equation (5), our method collapses the a posteriori density $p(x_n|z_{n-1})$ which is non-Gaussian in general at each iteration into a single Gaussian density function with mean $\bar{x}_{n|n-1}$ and covariance matrix $P_{n|n-1}$. This approximation is closely satisfied in the radar tracking applications because the a posteriori density is unimodal and the system equation is linear. By using this approximation, the equation (5) can be evaluated in closed form and the resulting state prediction density $p(x_n|z_{n-1})$ is a Gaussian density function with mean $\bar{x}_{n|n-1}$ and covarariance matrix $P_{n|n-1}$.

$$\bar{x}_{n|n-1} = F \bar{x}_{n-1|n-1}$$
$$P_{n|n-1} = FP_{n-1|n-1}F^T + GQ_nG^T$$

The calculation of the a posteriori density $p(x_n|z^n)$ from equation (4) requires the evaluation of the normalizing constant $p(z_n|z_{n-1})$ of the form

$$p(z_n|z_{n-1}) = \int C_1 e^{-\frac{1}{2} (s_n - h(s_n))^T R^{-1} (s_n - h(s_n))} ds_n$$

where $C_1 = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi}$

One may use the expression

$$F_1(x_n) = e^{-\frac{1}{2} (s_n - h(s_n))^T R^{-1} (s_n - h(s_n))}$$

as the Gaussian weighting function, but the remaining expression

$$F_2(x_n) = e^{-\frac{1}{2} (s_n - h(s_n))^T R^{-1} (s_n - h(s_n))}$$

is not algebraic and the result may not be accurate. The expression $F_2(x_n)$ is thus factorized into two expressions: one is Gaussian, $F_2(x_n)$; the other is nearly algebraic within the desired region, $F_2'(x_n)$ as follows:

$$F_2'(x_n) = e^{-\frac{1}{2} (s_n - h(s_n))^T R^{-1} (s_n - h(s_n))}$$

$$F_2(x_n) = e^{\left[-\frac{1}{2} (s_n - h(s_n))^T R^{-1} (s_n - h(s_n))
+ \frac{1}{2} (s_n - h(s_n))^T R^{-1} (s_n - h(s_n))\right]}$$

There are several other approaches using linear approximations to the nonlinear function $h(x_n)$ to factor $F_2(x_n)$ [7], but we employ the approximation technique in the converted measurement Kalman filter (CMKF), because the converted measurement Kalman filter (CMKF) has the correct covariance and it yields smaller errors than the EKF in radar tracking applications. The new weighting function determined by $F(x_n) = F_1(x_n) \cdot F_2'(x_n)$ becomes

$$F(x_n) = C_2 e^{-\frac{1}{2} (s_n - h(s_n))^T R^{-1} (s_n - h(s_n))}$$

where

$$\bar{x}_{n|n} = \bar{x}_{n|n-1} + K_n (z_n - D \bar{x}_{n|n-1})$$
$$P_{n|n} = P_{n|n-1} - K_n D_n P_{n|n-1}$$
$$K_n = P_{n|n-1} D_n^T (D_n P_{n|n-1} D_n^T + M_n)^{-1}$$

These equations are nothing else but the converted measurement Kalman filter (CMKF) equations, and the constant $C_2$ is not necessary to be known as it will be canceled later. The normalizing constant $p(z_n|z_{n-1})$ can be evaluated using multidimensional Gauss-Hermite quadrature as follows:

$$p(z_n|z_{n-1}) = C_1 C_2 |W_n|^{-\frac{1}{2}} \sum_{i=1}^{K} B_i f_i^2(x_{n|i})$$

where

$$W_n W_n^T = P_{n|n}$$
$$x_{n|i} = W_n u_i + \hat{x}_{n|n}$$
$$u_i = [u_{i1}, \ldots, u_{iN}]^T$$
$$B_i = B_{i1} \cdots B_{iN}$$

where $W_n$ is the square root of $P_{n|n}$ from the Cholesky algorithm; $x_{n|i}$ is the $i$th $N$-dimensional grid points and $B_i$ is the corresponding weight. $u_{i1}$ and $B_k$ are the grid points and the weights for one dimensional Gauss-Hermite quadrature. $K$ is the total number of grid points. Finally multidimensional Gauss-Hermite quadrature is used to compensate the error introduced from the approximation and the estimate becomes

$$\bar{x}_{n|n} = \frac{\sum_{i=1}^{K} x_{n|i} B_i f_i^2(x_{n|i})}{\sum_{i=1}^{K} B_i}$$

4.2. Filter Structure

The block diagram of the proposed filter is presented in Figure 1. It consists of the following four stages:

![Figure 1: Flow Diagram of the Proposed Filter](image-url)
Stage 2: Update Estimation:
The mean $\mathbf{x}_{n|p}$ and the covariance $\mathbf{P}_{n|p}$ of the a posteriori density $p(\mathbf{x}_n|\mathbf{Z}^n)$ are first estimated by the converted measurement Kalman filter (CMKF) equations (17), (18) and (19).

Stage 3: Update Correction:
To compensate for the errors introduced in the approximation from Stage 2 multidimensional Gauss-Hermite quadrature is used to evaluate the optimal estimate of the target state $\mathbf{x}_n$ directly from the Bayesian equations and the final estimate is given by equation (25).

4.3. Comments
This algorithm basically consists of two parts: one is the converted measurement Kalman filter (CMKF) and the other is an error-compensation unit using multidimensional Gauss-Hermite quadrature. The complexity of this algorithm is of an order of $N$ where $N$ is the total number of grid points. The more the total number of grid points is, the more accurate the result we will get. Simulation results show that this algorithm is accurate compared with other methods even when the number of the grid points is as small as five for each dimension. This algorithm is also efficient because only simple additions and multiplications are required in the computation; the computation of the grid points $\mathbf{u}_i$ and the corresponding weights $\mathbf{B}_i$ can be done offline.

5. SIMULATION RESULTS

To compare the performance of our proposed filter with that of currently popular approximate filters a two-dimensional target tracking application described by the system equation (1) and the measurement equation (2) with the following parameters is simulated.

$$
\mathbf{F} = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 
\end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix}
1/2 & 0 \\
1 & 0 \\
0 & 1/2 \\
0 & 1
\end{bmatrix},
$$

$$
\mathbf{h}(\mathbf{x}_n) = \begin{bmatrix}
\sqrt{x_n^2 + y_n^2} \\
\text{atan}(y_n/x_n)
\end{bmatrix},
$$

$$
\mathbf{Q} = \begin{bmatrix}
0.0001 & 0 \\
0 & 0.0001
\end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix}
100 & 0 \\
0 & 0.01
\end{bmatrix},
$$

$$
\mathbf{x}_0 = \begin{bmatrix}
50 \text{km} \\
-10 \text{m/s} \\
10 \text{km} \\
20 \text{m/s}
\end{bmatrix}^T.
$$

Tracks are initiated with two point differencing to obtain the initial velocity estimate. The results presented in Figures 2 and 3 are based on 100 measurements averaged over 500 independent realizations of the experiment with the sampling interval of one second.

The proposed filter is compared with the well-known classical filters, e.g. the EKF and the converted measurement Kalman filter (CMKF). The position errors and the velocity errors for each filter are shown in Figs. 2 and 3 where the error is defined as the root mean square of the difference between the actual value and the estimated value. Our proposed method converges faster and yields results of smaller error than the EKF and the converted measurement Kalman filter (CMKF) does whereas the EKF diverges due to the instability of the Jacobian matrix.

Figure 2: Comparison of the position errors

Figure 3: Comparison of the velocity errors

References